A Fortran-Python Interface for Integrating Machine Learning Parameterization into Earth System Models

Parameterizations in Earth System Models (ESMs) are subject to biases and uncertainties arising from subjective empirical assumptions and incomplete understanding of the underlying physical processes. Recently, the growing representational capability of machine learning (ML) in solving complex probl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoscientific model development Jg. 18; H. 6
Hauptverfasser: Zhang, Tao, Morcrette, Cyril, Zhang, Meng, Lin, Wuyin, Xie, Shaocheng, Liu, Ye, Van Weverberg, Kwinten, Rodrigues, Joana
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Copernicus Publications, EGU 24.03.2025
Schlagworte:
ISSN:1991-9603
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Parameterizations in Earth System Models (ESMs) are subject to biases and uncertainties arising from subjective empirical assumptions and incomplete understanding of the underlying physical processes. Recently, the growing representational capability of machine learning (ML) in solving complex problems has spawned immense interests in climate science applications. Specifically, ML-based parameterizations have been developed to represent convection, radiation and microphysics processes in ESMs by learning from observations or high-resolution simulations, which have the potential to improve the accuracies and alleviate the uncertainties. Previous works have developed some surrogate models for these processes using ML. These surrogate models need to be coupled with the dynamical core of ESMs to investigate the effectiveness and their performance in a coupled system. In this study, we present a novel Fortran-Python interface designed to seamlessly integrate ML parameterizations into ESMs. This interface showcases high versatility by supporting popular ML frameworks like PyTorch, TensorFlow, and Scikit-learn. We demonstrate the interface's modularity and reusability through two cases: a ML trigger function for convection parameterization and a ML wildfire model. We conduct a comprehensive evaluation of memory usage and computational overhead resulting from the integration of Python codes into the Fortran ESMs. By leveraging this flexible interface, ML parameterizations can be effectively developed, tested, and integrated into ESMs.
AbstractList Parameterizations in Earth System Models (ESMs) are subject to biases and uncertainties arising from subjective empirical assumptions and incomplete understanding of the underlying physical processes. Recently, the growing representational capability of machine learning (ML) in solving complex problems has spawned immense interests in climate science applications. Specifically, ML-based parameterizations have been developed to represent convection, radiation and microphysics processes in ESMs by learning from observations or high-resolution simulations, which have the potential to improve the accuracies and alleviate the uncertainties. Previous works have developed some surrogate models for these processes using ML. These surrogate models need to be coupled with the dynamical core of ESMs to investigate the effectiveness and their performance in a coupled system. In this study, we present a novel Fortran-Python interface designed to seamlessly integrate ML parameterizations into ESMs. This interface showcases high versatility by supporting popular ML frameworks like PyTorch, TensorFlow, and Scikit-learn. We demonstrate the interface's modularity and reusability through two cases: a ML trigger function for convection parameterization and a ML wildfire model. We conduct a comprehensive evaluation of memory usage and computational overhead resulting from the integration of Python codes into the Fortran ESMs. By leveraging this flexible interface, ML parameterizations can be effectively developed, tested, and integrated into ESMs.
Author Morcrette, Cyril
Liu, Ye
Van Weverberg, Kwinten
Lin, Wuyin
Rodrigues, Joana
Zhang, Meng
Xie, Shaocheng
Zhang, Tao
Author_xml – sequence: 1
  orcidid: 0000000257001966
  fullname: Zhang, Tao
  organization: Brookhaven National Laboratory (BNL), Upton, NY (United States)] (ORCID:0000000257001966
– sequence: 2
  orcidid: 0000000242408472
  fullname: Morcrette, Cyril
  organization: Exeter Met Office (United Kingdom); Univ. of Exeter (United Kingdom)] (ORCID:0000000242408472
– sequence: 3
  fullname: Zhang, Meng
  organization: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
– sequence: 4
  fullname: Lin, Wuyin
  organization: Brookhaven National Laboratory (BNL), Upton, NY (United States)
– sequence: 5
  orcidid: 0000000189315145
  fullname: Xie, Shaocheng
  organization: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)] (ORCID:0000000189315145
– sequence: 6
  orcidid: 0000000151318412
  fullname: Liu, Ye
  organization: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)] (ORCID:0000000151318412
– sequence: 7
  orcidid: 0000000253977320
  fullname: Van Weverberg, Kwinten
  organization: Ghent Univ. (Belgium); Royal Meteorological Institute of Belgium (Belgium)] (ORCID:0000000253977320
– sequence: 8
  fullname: Rodrigues, Joana
  organization: Exeter Met Office (United Kingdom)
BackLink https://www.osti.gov/servlets/purl/2514350$$D View this record in Osti.gov
BookMark eNotjE1vAiEURVnYpNp21T9Auqd9MAwMS2O0NdHUpO4NMA9nGoUE2NhfX_uxujk3594ZmcQUkZBHDs8tN_LleO6ZACGZNhMy5cZwZhQ0t2RWyieAMlrpKcE5XaVcs41sd6lDinQdK-ZgPdKQ8i8ds61jPNKt9cMYkW7Q5vhT7Gy2Z7zq49fVuG7HWBNd2lwH-nEpFc90m3o8lXtyE-yp4MN_3pH9arlfvLHN--t6Md-wpKRhPSB4jsBdB75z2oHQzmlQtmu4NlJJ1ChCEzQq16rWidA705ogoJMgoLkjT3-3qdTxUPxY0Q8-xYi-HkTLZdNC8w0XCld0
ContentType Journal Article
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
DBID OIOZB
OTOTI
DOI 10.5194/gmd-2024-79
DatabaseName OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Environmental Sciences
ExternalDocumentID 2514350
GroupedDBID 5VS
8R4
8R5
AAFWJ
ABDBF
ACUHS
ADBBV
AENEX
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
ESX
GROUPED_DOAJ
H13
IAO
IEA
IEP
ISR
ITC
KQ8
OIOZB
OK1
OTOTI
P2P
Q2X
RKB
RNS
TR2
TUS
ID FETCH-LOGICAL-o649-d0e0c1e01b80c8b7b027bb706a83179464e7e2f3f7e6b565b2fdb959f20840203
ISSN 1991-9603
IngestDate Mon Aug 04 02:20:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-o649-d0e0c1e01b80c8b7b027bb706a83179464e7e2f3f7e6b565b2fdb959f20840203
Notes BNL--227547-2025-JAAM
AC05-76RL01830; SC0012704; AC52-07NA27344
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000000189315145
0000000242408472
0000000253977320
0000000257001966
0000000151318412
OpenAccessLink http://dx.doi.org/10.5194/gmd-2024-79
ParticipantIDs osti_scitechconnect_2514350
PublicationCentury 2000
PublicationDate 2025-03-24
PublicationDateYYYYMMDD 2025-03-24
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Geoscientific model development
PublicationYear 2025
Publisher Copernicus Publications, EGU
Publisher_xml – name: Copernicus Publications, EGU
SSID ssj0069767
Score 2.286562
Snippet Parameterizations in Earth System Models (ESMs) are subject to biases and uncertainties arising from subjective empirical assumptions and incomplete...
SourceID osti
SourceType Open Access Repository
SubjectTerms ENVIRONMENTAL SCIENCES
Title A Fortran-Python Interface for Integrating Machine Learning Parameterization into Earth System Models
URI https://www.osti.gov/servlets/purl/2514350
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  issn: 1991-9603
  databaseCode: RKB
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  omitProxy: false
  ssIdentifier: ssj0069767
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1991-9603
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0069767
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELZggLQXBINpY4D8wNsU4TleHD9WU1cmjWkPRextqu3LhATJ1LTT-u93ZztpViEED7xElV1ZTe7L-Xz97jvGPjnnwHgF-CJVOlNeOCIBQGa9gFyV3urKh2YT-uKivLoylymr1IZ2Arquy_t7c_tfTY1jaGwqnf0Hc_eL4gB-RqPjFc2O178y_OjwFENq3IKyyxUJA8SkXzVzUd77LOlDUIrga2BSQieyeoPxJHG1SL45VmeSmkRzOJ7RfztR2zw0T_vZDmPaCURBzMA6iq11ulqsIa2mT01PZ01v5mbuiCkc6Yir-Zrv0X-baLfd4HkUPPi-XCW98JSukMfE15LrdOVJcwt4R27ZPspLBsc_-TZwxMTIwtNV_ntP3bndzQ0A41GFBrr55RETUmWxUc2GorYMQaJ4yp5Jjeep7hwet-8C47PQkaf7AbGokxb-PFgWd_AGffAgFpm-Yi_TIYKPovFfsydQ77Dd8bpmESeT02532ItJ6N68esNgxB9jg_fY4IgNPsAGT9jgHTb4JjY4YYMHbPCIDR6x8ZZNT8fTky9Z6rORNYUyGb6Vwh2BOLKlcKXVVkhtrRbFrMzJXRcKNMgqrzQUFuN_KytvzbGppCgp-5Dvsq26qWGP8cLgShhUWmFA4UM24JWS3hucgEqZfXZAT-0aUUkSxY64XG5xnQzy7o-zB2x7jaf3bGsxX8IH9tzdLX6084_Bhg-PYmtD
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fortran-Python+Interface+for+Integrating+Machine+Learning+Parameterization+into+Earth+System+Models&rft.jtitle=Geoscientific+model+development&rft.au=Zhang%2C+Tao&rft.au=Morcrette%2C+Cyril&rft.au=Zhang%2C+Meng&rft.au=Lin%2C+Wuyin&rft.date=2025-03-24&rft.pub=Copernicus+Publications%2C+EGU&rft.issn=1991-9603&rft.volume=18&rft.issue=6&rft_id=info:doi/10.5194%2Fgmd-2024-79&rft.externalDocID=2514350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon