Intercalation‐Activated Layered MoO3 Nanobelts as Biodegradable Nanozymes for Tumor‐Specific Photo‐Enhanced Catalytic Therapy
The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing strategy to optimize their physicochemical properties and application performance. Herein, we report the activation of layered MoO3 nanobelts via a...
Saved in:
| Published in: | Angewandte Chemie (International ed.) Vol. 61; no. 16; pp. e202115939 - n/a |
|---|---|
| Main Authors: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
Wiley Subscription Services, Inc
11.04.2022
Wiley |
| Edition: | International ed. in English |
| Subjects: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing strategy to optimize their physicochemical properties and application performance. Herein, we report the activation of layered MoO3 nanobelts via aqueous intercalation as an efficient biodegradable nanozyme for tumor‐specific photo‐enhanced catalytic therapy. The long MoO3 nanobelts are grinded and then intercalated with Na+ and H2O to obtain the short Na+/H2O co‐intercalated MoO3−x (NH−MoO3−x) nanobelts. In contrast to the inert MoO3 nanobelts, the NH−MoO3−x nanobelts exhibit excellent enzyme‐mimicking catalytic activity for generation of reactive oxygen species, which can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after bovine serum albumin modification, the NH−MoO3−x nanobelts can efficiently kill cancer cells in vitro and eliminate tumors in vivo facilitating with 1064 nm laser irradiation.
Aqueous intercalation is proposed here as a promising strategy to activate the enzyme‐mimicking catalytic activity of layered MoO3 nanobelts for the generation of reactive oxygen species including ⋅OH and ⋅O2− in a tumor microenvironment, making it an efficient biodegradable nanozyme for tumor‐specific photo‐enhanced catalytic therapy. |
|---|---|
| AbstractList | The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing strategy to optimize their physicochemical properties and application performance. Herein, we report the activation of layered MoO3 nanobelts via aqueous intercalation as an efficient biodegradable nanozyme for tumor‐specific photo‐enhanced catalytic therapy. The long MoO3 nanobelts are grinded and then intercalated with Na+ and H2O to obtain the short Na+/H2O co‐intercalated MoO3−x (NH−MoO3−x) nanobelts. In contrast to the inert MoO3 nanobelts, the NH−MoO3−x nanobelts exhibit excellent enzyme‐mimicking catalytic activity for generation of reactive oxygen species, which can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after bovine serum albumin modification, the NH−MoO3−x nanobelts can efficiently kill cancer cells in vitro and eliminate tumors in vivo facilitating with 1064 nm laser irradiation.
Aqueous intercalation is proposed here as a promising strategy to activate the enzyme‐mimicking catalytic activity of layered MoO3 nanobelts for the generation of reactive oxygen species including ⋅OH and ⋅O2− in a tumor microenvironment, making it an efficient biodegradable nanozyme for tumor‐specific photo‐enhanced catalytic therapy. The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing strategy to optimize their physicochemical properties and application performance. Herein, we report the activation of layered MoO3 nanobelts via aqueous intercalation as an efficient biodegradable nanozyme for tumor-specific photo-enhanced catalytic therapy. In this work, the long MoO3 nanobelts are grinded and then intercalated with Na+ and H2O to obtain the short Na+/H2O co-intercalated MoO3–x (NH–MoO3–x) nanobelts. In contrast to the inert MoO3 nanobelts, the NH–MoO3–x nanobelts exhibit excellent enzyme-mimicking catalytic activity for generation of reactive oxygen species, which can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after bovine serum albumin modification, the NH–MoO3–x nanobelts can efficiently kill cancer cells in vitro and eliminate tumors in vivo facilitating with 1064 nm laser irradiation. The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing strategy to optimize their physicochemical properties and application performance. Herein, we report the activation of layered MoO3 nanobelts via aqueous intercalation as an efficient biodegradable nanozyme for tumor-specific photo-enhanced catalytic therapy. The long MoO3 nanobelts are grinded and then intercalated with Na+ and H2 O to obtain the short Na+ /H2 O co-intercalated MoO3-x (NH-MoO3-x ) nanobelts. In contrast to the inert MoO3 nanobelts, the NH-MoO3-x nanobelts exhibit excellent enzyme-mimicking catalytic activity for generation of reactive oxygen species, which can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after bovine serum albumin modification, the NH-MoO3-x nanobelts can efficiently kill cancer cells in vitro and eliminate tumors in vivo facilitating with 1064 nm laser irradiation.The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing strategy to optimize their physicochemical properties and application performance. Herein, we report the activation of layered MoO3 nanobelts via aqueous intercalation as an efficient biodegradable nanozyme for tumor-specific photo-enhanced catalytic therapy. The long MoO3 nanobelts are grinded and then intercalated with Na+ and H2 O to obtain the short Na+ /H2 O co-intercalated MoO3-x (NH-MoO3-x ) nanobelts. In contrast to the inert MoO3 nanobelts, the NH-MoO3-x nanobelts exhibit excellent enzyme-mimicking catalytic activity for generation of reactive oxygen species, which can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after bovine serum albumin modification, the NH-MoO3-x nanobelts can efficiently kill cancer cells in vitro and eliminate tumors in vivo facilitating with 1064 nm laser irradiation. The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing strategy to optimize their physicochemical properties and application performance. Herein, we report the activation of layered MoO3 nanobelts via aqueous intercalation as an efficient biodegradable nanozyme for tumor‐specific photo‐enhanced catalytic therapy. The long MoO3 nanobelts are grinded and then intercalated with Na+ and H2O to obtain the short Na+/H2O co‐intercalated MoO3−x (NH−MoO3−x) nanobelts. In contrast to the inert MoO3 nanobelts, the NH−MoO3−x nanobelts exhibit excellent enzyme‐mimicking catalytic activity for generation of reactive oxygen species, which can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after bovine serum albumin modification, the NH−MoO3−x nanobelts can efficiently kill cancer cells in vitro and eliminate tumors in vivo facilitating with 1064 nm laser irradiation. |
| Author | Ma, Lu Zhang, Qinghua Yin, Wenyan Zha, Jiajia Wang, Yanlong Du, Yonghua Gu, Lin Ma, Lufang Peng, Feng Gu, Zhanjun Peng, Na Zhou, Zhan Meng, Fanqi Tan, Chaoliang |
| Author_xml | – sequence: 1 givenname: Zhan surname: Zhou fullname: Zhou, Zhan organization: People's Hospital of Zhengzhou University – sequence: 2 givenname: Yanlong surname: Wang fullname: Wang, Yanlong organization: Wuhan University of Science and Technology – sequence: 3 givenname: Feng surname: Peng fullname: Peng, Feng organization: Luoyang Normal University – sequence: 4 givenname: Fanqi surname: Meng fullname: Meng, Fanqi organization: Beijing National Laboratory for Condensed Matter Physics – sequence: 5 givenname: Jiajia surname: Zha fullname: Zha, Jiajia organization: City University of Hong Kong – sequence: 6 givenname: Lu surname: Ma fullname: Ma, Lu organization: Brookhaven National Laboratory Upton – sequence: 7 givenname: Yonghua surname: Du fullname: Du, Yonghua organization: Brookhaven National Laboratory Upton – sequence: 8 givenname: Na surname: Peng fullname: Peng, Na organization: Wuhan University of Science and Technology – sequence: 9 givenname: Lufang surname: Ma fullname: Ma, Lufang organization: Luoyang Normal University – sequence: 10 givenname: Qinghua surname: Zhang fullname: Zhang, Qinghua organization: University of Chinese Academy of Sciences – sequence: 11 givenname: Lin surname: Gu fullname: Gu, Lin email: l.gu@iphy.ac.cn organization: University of Chinese Academy of Sciences – sequence: 12 givenname: Wenyan surname: Yin fullname: Yin, Wenyan email: yinwy@ihep.ac.cn organization: Chinese Academy of Sciences – sequence: 13 givenname: Zhanjun surname: Gu fullname: Gu, Zhanjun email: zjgu@ihep.ac.cn organization: Chinese Academy of Sciences – sequence: 14 givenname: Chaoliang orcidid: 0000-0003-1695-5285 surname: Tan fullname: Tan, Chaoliang email: chaoltan@cityu.edu.hk organization: City University of Hong Kong |
| BackLink | https://www.osti.gov/servlets/purl/1844569$$D View this record in Osti.gov |
| BookMark | eNpdkU9vEzEQxS3USvQPV84ruHDZsrbX3vUxRAEihRaJcLbGzixxtbGD7RQtJyS-AJ-RT4JLqh56mnlvfnrS6J2TEx88EvKSNle0adhb8A6vWMMoFYqrZ-SMCkZr3nX8pOwt53XXC_qcnKd0W_i-b-QZ-b30GaOFEbIL_u-vPzOb3R1k3FQrmDCW-Snc8OoafDA45lRBqt65sMFvETZgRvx_-jntMFVDiNX6sAux5HzZo3WDs9XnbcihGAu_BW9L3hwyjFMup_UWI-ynS3I6wJjwxcO8IF_fL9bzj_Xq5sNyPlvVgXOuaoFGGdUp3Ag-UNUargQit6IrEkVvUNKGKmaoAQOUcVQKJbQDHQQWm1-QV8fckLLTybqMdmuD92izpn3bCqkK9OYI7WP4fsCU9c4li-MIHsMhaSYZU5Kzjhf09RP0NhyiLy8UqpWybaSghVJH6ocbcdL76HYQJ00bfd-avm9NP7amZ9fLxaPi_wAgfpOG |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| CorporateAuthor | Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) |
| CorporateAuthor_xml | – name: Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) |
| DBID | 7TM K9. 7X8 OIOZB OTOTI |
| DOI | 10.1002/anie.202115939 |
| DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | n/a |
| ExternalDocumentID | 1844569 ANIE202115939 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22005259, 52122002 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG K9. 7X8 AAPBV ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS B-7 OIOZB OTOTI PQEST |
| ID | FETCH-LOGICAL-o3339-5eb9b979ed53f194b395ee3c573f1e58be610192b1baba123e99e6a4f1f5e92b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 205 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000753959400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Fri May 19 01:41:27 EDT 2023 Sun Nov 09 10:57:02 EST 2025 Tue Oct 07 07:14:42 EDT 2025 Wed Jan 22 16:25:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-o3339-5eb9b979ed53f194b395ee3c573f1e58be610192b1baba123e99e6a4f1f5e92b3 |
| Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 National Basic Research Programs of China SC0012704; 9610495; 9680297; 7020013; 22005259; 52122002 BNL-222732-2022-JAAM National Natural Science Foundation of China (NSFC) USDOE Office of Science (SC), Basic Energy Sciences (BES) Beijing Natural Science Foundation |
| ORCID | 0000-0003-1695-5285 0000000316955285 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1844569 |
| PQID | 2646640651 |
| PQPubID | 946352 |
| PageCount | 12 |
| ParticipantIDs | osti_scitechconnect_1844569 proquest_miscellaneous_2622963273 proquest_journals_2646640651 wiley_primary_10_1002_anie_202115939_ANIE202115939 |
| PublicationCentury | 2000 |
| PublicationDate | April 11, 2022 |
| PublicationDateYYYYMMDD | 2022-04-11 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 11, 2022 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: United States |
| PublicationTitle | Angewandte Chemie (International ed.) |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
| References | 2015; 14 2017; 8 2015; 58 2018; 140 2021; 2 2020; 581 2019; 31 2020; 142 2019; 13 2013; 42 1947; 160 2013; 340 2020; 32 2021; 143 2021; 1 2019 2019; 58 131 2018; 9 2021; 16 2021; 15 2018; 3 2020; 3 2021; 33 2019; 61 1986; 21 2017; 11 2018 2018; 57 130 2021; 17 2018; 555 2021 2021; 60 133 2018; 30 2019; 119 2011; 46 2016; 138 2013; 110 2007; 2 2008; 112 2014; 8 2001; 36 2016; 69 2012; 338 2016; 45 2018; 13 |
| References_xml | – volume: 338 start-page: 903 year: 2012 end-page: 910 publication-title: Science – volume: 58 131 start-page: 16236 16382 year: 2019 2019 end-page: 16242 16388 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 26142 26346 year: 2021 2021 end-page: 26150 26354 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 357 year: 2017 publication-title: Nat. Commun. – volume: 140 start-page: 10071 year: 2018 end-page: 10074 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 3943 4007 year: 2018 2018 end-page: 3948 4012 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 704 year: 2016 end-page: 717 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 6742 year: 2016 end-page: 6765 publication-title: Chem. Soc. Rev. – volume: 17 year: 2021 publication-title: Small – volume: 142 start-page: 1636 year: 2020 end-page: 1644 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 6527 year: 2020 end-page: 6537 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 119 start-page: 4357 year: 2019 end-page: 4412 publication-title: Chem. Rev. – volume: 340 year: 2013 publication-title: Science – volume: 140 start-page: 9203 year: 2018 end-page: 9210 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3334 year: 2018 publication-title: Nat. Commun. – volume: 143 start-page: 8855 year: 2021 end-page: 8865 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 577 year: 2007 end-page: 583 publication-title: Nat. Nanotechnol. – volume: 14 start-page: 622 year: 2015 end-page: 627 publication-title: Nat. Mater. – volume: 16 year: 2021 publication-title: Biomed. Mater. – volume: 11 start-page: 11803 year: 2017 end-page: 11830 publication-title: ACS Nano – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 9 start-page: 2906 year: 2018 publication-title: Nat. Commun. – volume: 3 start-page: 289 year: 2020 end-page: 294 publication-title: Nat. Catal. – volume: 555 start-page: 231 year: 2018 end-page: 236 publication-title: Nature – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 8 start-page: 7260 year: 2014 end-page: 7271 publication-title: ACS Nano – volume: 13 start-page: 294 year: 2018 end-page: 299 publication-title: Nat. Nanotechnol. – volume: 69 start-page: 38 year: 2016 publication-title: Phys. Today – volume: 2 year: 2021 publication-title: View – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 61 start-page: 617 year: 2019 end-page: 625 publication-title: Nano Energy – volume: 9 start-page: 1440 year: 2018 publication-title: Nat. Commun. – volume: 60 133 start-page: 9480 9566 year: 2021 2021 end-page: 9488 9574 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 945 year: 1986 end-page: 960 publication-title: Mater. Res. Bull. – volume: 112 start-page: 11050 year: 2008 end-page: 11058 publication-title: J. Phys. Chem. C – volume: 3 start-page: 2602 year: 2018 end-page: 2609 publication-title: ACS Energy Lett. – volume: 1 year: 2021 publication-title: Exploration – volume: 42 start-page: 6060 year: 2013 end-page: 6093 publication-title: Chem. Soc. Rev. – volume: 36 start-page: 5511 year: 2001 end-page: 5514 publication-title: J. Mater. Sci. – volume: 13 start-page: 10643 year: 2019 end-page: 10652 publication-title: ACS Nano – volume: 58 start-page: 313 year: 2015 end-page: 341 publication-title: Sci. China Mater. – volume: 581 start-page: 171 year: 2020 end-page: 177 publication-title: Nature – volume: 46 start-page: 409 year: 2011 publication-title: Cryst. Res. Technol. – volume: 15 start-page: 10597 year: 2021 end-page: 10608 publication-title: ACS Nano – volume: 58 131 start-page: 12624 12754 year: 2019 2019 end-page: 12631 12761 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 160 start-page: 41 year: 1947 end-page: 43 publication-title: Nature – volume: 110 start-page: 19701 year: 2013 end-page: 19706 publication-title: Proc. Natl. Acad. Sci. USA |
| SSID | ssj0028806 |
| Score | 2.695592 |
| Snippet | The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing... |
| SourceID | osti proquest wiley |
| SourceType | Open Access Repository Aggregation Database Publisher |
| StartPage | e202115939 |
| SubjectTerms | Biodegradability Biodegradation Bovine serum albumin Catalytic activity Catalytic Therapy Intercalation Irradiation Layered materials Layered MoO3 MATERIALS SCIENCE Mimicry Molybdenum trioxide Nanozymes Physicochemical properties Reactive oxygen species Serum albumin Tumor-Specific Tumors |
| Title | Intercalation‐Activated Layered MoO3 Nanobelts as Biodegradable Nanozymes for Tumor‐Specific Photo‐Enhanced Catalytic Therapy |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202115939 https://www.proquest.com/docview/2646640651 https://www.proquest.com/docview/2622963273 https://www.osti.gov/servlets/purl/1844569 |
| Volume | 61 |
| WOSCitedRecordID | wos000753959400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD5iHRLcjH_RbUxG4jbaYsdJfFlKK5BGmVAn9c6KnROtEotRkyKVKyRegGfck-zYacN2C5d2YsvK-fF3HJ_vALxLDAk5S8sozWwSJRkvIpVmJhQzy5RNikTZUGwim83yxUJd3Mni7_gh-gM3bxnBX3sDL0xz-pc01GdgU3xHAYxUQu3BPifllQPY__B1enneB12kn12GkRCRL0S_I24846f3ZyCf7Miq7iHNu3g1bDjTJ_-_1KdwsAWbbNRpxzN4gPVzeDTe1Xh7Ab_DgSCJKcjn5tefkQ3lzrBk58XGl_Fkn90XwcgHO4Pf2oYVDXu_dKWnmCh91lV49HNzjQ0j-Mvm62u3onlCWftqadnFlWsddUzqq3DXgI39edGGFsTmHaHBS7icTubjj9G2LEPkhBAqkmiUUZnCUooqVokRSiIKKzNqoswNEiQj4GhiU5iCdkZUCtMiqeJKInWLVzCoXY2vgVVVRSPJ3UqDCXIkuJefWZ5b5JUHI0M48jLRhAY8pa31d39sqykqJdynhnC8E5XeWl6jCeClKaEUGQ_hbf-YPqv_EVLU6Nb-Hc7J8RByGwIPgtPfO24P3bE4c-1FpnuR6dHs06RvHf7LoCN4zH3mhKeJjI9h0K7W-AYe2h_tslmdwF62yE-2unsLtM7zXQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagRSoX_hFLCxiJa9TGjpP1cVl21YrtUqGt1JsVOxN1pTZGm2yl7QmJF-AZeRJmnGygV8TRTmxZmR9_nni-YexDYlHIWVpEaeaSKMlEHuk0s6GYWaZdkifahWIT2Xw-vLjQZ91tQsqFafkh-oAbWUbw12TgFJA-_MMaSinYeMDDE4zSUt9nuwnqEir57qev0_NZf-pCBW1TjKSMqBL9lrnxSBzenQGdskezugM1_wasYceZPv4Pa33CHnVwk49a_XjK7kH1jO2Nt1XenrMfISSIggoS-vX958iFgmdQ8Fm-oUKe_NR_kRy9sLdw1dQ8r_nHpS-IZKKgvKvw6HZzDTVHAMwX62u_wnlCYfty6fjZpW88dkyqy3DbgI8pYrTBBfFFS2nwgp1PJ4vxcdQVZoi8lFJHCqy2OtNQKFnGOrFSKwDpVIZNUEMLCMoQOtrY5jbHvRG0hjRPyrhUgN3yJdupfAWvGC_LEkeiw1UWEhCAgG945MTQgSgJjgzYPgnFIB4gUltHt39cY_BcishPD9jBVlams73aIMRLU8QpKh6w9_1j_Kz0KySvwK_pHSHQ9SB2GzARJGe-tewepuVxFoZEZnqRmdH8ZNK3Xv_LoHds73hxOjOzk_nnffZQUB4FkUbGB2ynWa3hDXvgbpplvXrbqfBvhYj2ZQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFL2CDgEvfA5RNsBIvEZb7HzUj13XiolSKtRJe7Ni50arxOKpSSd1T0j7A_uN_JJdO2lgr4hHO7Fl5fpeHzu-5wB8jjQZOU3yIElNFEQpzwKZpNqLmaXSRFkkjRebSGezwdmZnLe3CV0uTMMP0R24Oc_w8do5OF7mxcEf1lCXgk0bPNrBxFLIh7ATOSWZHuwc_5icTrtdF03QJsVIiMAp0W-ZGw_5wf0eKChbcqt7UPNvwOpXnMnz_zDWF_CshZts2MyPl_AAy1fwZLRVeXsNN_5IkAzlLfT71-3QeMEzzNk02zghT_bNfheMorDV-LOuWFaxo6XNHclE7vKu_KPrzQVWjAAwW6wv7Ir68cL2xdKw-bmtLVWMy3N_24CN3InRhgbEFg2lwS6cTsaL0ZegFWYIrBBCBjFqqWUqMY9FEcpICxkjChOnVMR4oJFAGUFHHepMZ7Q2opSYZFERFjFStXgDvdKW-BZYURTUkgJurDFCjgT4BoeGDwzywsGRPuw5oyjCA47U1rjbP6ZWtC8l5Cf7sL-1lWp9r1IE8ZKEcEoc9uFT95g-q_sVkpVo1-4dzin0EHbrA_eWU5cNu4dqeJy5ciZTncnUcHYy7krv_qXRR3g8P56o6cns6x485S6NwnFGhvvQq1drfA-PzFW9rFYf2hl8Bx9h9eA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intercalation%E2%80%90Activated+Layered+MoO3+Nanobelts+as+Biodegradable+Nanozymes+for+Tumor%E2%80%90Specific+Photo%E2%80%90Enhanced+Catalytic+Therapy&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhou%2C+Zhan&rft.au=Wang%2C+Yanlong&rft.au=Peng%2C+Feng&rft.au=Meng%2C+Fanqi&rft.date=2022-04-11&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202115939&rft.externalDBID=10.1002%252Fanie.202115939&rft.externalDocID=ANIE202115939 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |