Principal component analysis on chemical abundances spaces

In preparation for the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) chemical tagging survey of about a million Galactic FGK stars, we estimate the number of independent dimensions of the space defined by the stellar chemical element abundances [X/Fe]. This leads to a way to stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society Jg. 421; H. 2; S. 1231 - 1255
Hauptverfasser: Ting, Y. S., Freeman, K. C., Kobayashi, C., De Silva, G. M., Bland-Hawthorn, J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.04.2012
Oxford University Press
Schlagworte:
ISSN:0035-8711, 1365-2966
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In preparation for the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) chemical tagging survey of about a million Galactic FGK stars, we estimate the number of independent dimensions of the space defined by the stellar chemical element abundances [X/Fe]. This leads to a way to study the origin of elements from observed chemical abundances using principal component analysis. We explore abundances in several environments, including solar neighbourhood thin/thick disc stars, halo metal-poor stars, globular clusters, open clusters, the Large Magellanic Cloud and the Fornax dwarf spheroidal galaxy. By studying solar-neighbourhood stars, we confirm the universality of the r-process that tends to produce [neutron-capture elements/Fe] in a constant ratio. We find that, especially at low metallicity, the production of r-process elements is likely to be associated with the production of α-elements. This may support the core-collapse supernovae as the r-process site. We also verify the overabundances of light s-process elements at low metallicity, and find that the relative contribution decreases at higher metallicity, which suggests that this lighter elements primary process may be associated with massive stars. We also verify the contribution from the s-process in low-mass asymptotic giant branch (AGB) stars at high metallicity. Our analysis reveals two types of core-collapse supernovae: one produces mainly α-elements, the other produces both α-elements and Fe-peak elements with a large enhancement of heavy Fe-peak elements which may be the contribution from hypernovae. Excluding light elements that may be subject to internal mixing, K and Cu, we find that the [X/Fe] chemical abundance space in the solar neighbourhood has about six independent dimensions both at low metallicity (−3.5 ≲ [Fe/H] ≲−2) and high metallicity ([Fe/H] ≳−1). However the dimensions come from very different origins in these two cases. The extra contribution from low-mass AGB stars at high metallicity compensates the dimension loss due to the homogenization of the core-collapse supernovae ejecta. Including the extra dimensions from [Fe/H], K, Cu and the light elements, the number of independent dimensions of the [X/Fe]+[Fe/H] chemical space in the solar neighbourhood for HERMES is about eight to nine. Comparing fainter galaxies and the solar neighbourhood, we find that the chemical space for fainter galaxies such as Fornax and the Large Magellanic Cloud has a higher dimensionality. This is consistent with the slower star formation history of fainter galaxies. We find that open clusters have more chemical space dimensions than the nearby metal-rich field stars. This suggests that a survey of stars in a larger Galactic volume than the solar neighbourhood may show about one more dimension in its chemical abundance space.
AbstractList ABSTRACT In preparation for the High Efficiency and Resolution Multi‐Element Spectrograph (HERMES) chemical tagging survey of about a million Galactic FGK stars, we estimate the number of independent dimensions of the space defined by the stellar chemical element abundances [X/Fe]. This leads to a way to study the origin of elements from observed chemical abundances using principal component analysis. We explore abundances in several environments, including solar neighbourhood thin/thick disc stars, halo metal‐poor stars, globular clusters, open clusters, the Large Magellanic Cloud and the Fornax dwarf spheroidal galaxy. By studying solar‐neighbourhood stars, we confirm the universality of the r‐process that tends to produce [neutron‐capture elements/Fe] in a constant ratio. We find that, especially at low metallicity, the production of r‐process elements is likely to be associated with the production of α‐elements. This may support the core‐collapse supernovae as the r‐process site. We also verify the overabundances of light s‐process elements at low metallicity, and find that the relative contribution decreases at higher metallicity, which suggests that this lighter elements primary process may be associated with massive stars. We also verify the contribution from the s‐process in low‐mass asymptotic giant branch (AGB) stars at high metallicity. Our analysis reveals two types of core‐collapse supernovae: one produces mainly α‐elements, the other produces both α‐elements and Fe‐peak elements with a large enhancement of heavy Fe‐peak elements which may be the contribution from hypernovae. Excluding light elements that may be subject to internal mixing, K and Cu, we find that the [X/Fe] chemical abundance space in the solar neighbourhood has about six independent dimensions both at low metallicity (−3.5 ≲ [Fe/H] ≲−2) and high metallicity ([Fe/H] ≳−1). However the dimensions come from very different origins in these two cases. The extra contribution from low‐mass AGB stars at high metallicity compensates the dimension loss due to the homogenization of the core‐collapse supernovae ejecta. Including the extra dimensions from [Fe/H], K, Cu and the light elements, the number of independent dimensions of the [X/Fe]+[Fe/H] chemical space in the solar neighbourhood for HERMES is about eight to nine. Comparing fainter galaxies and the solar neighbourhood, we find that the chemical space for fainter galaxies such as Fornax and the Large Magellanic Cloud has a higher dimensionality. This is consistent with the slower star formation history of fainter galaxies. We find that open clusters have more chemical space dimensions than the nearby metal‐rich field stars. This suggests that a survey of stars in a larger Galactic volume than the solar neighbourhood may show about one more dimension in its chemical abundance space.
In preparation for the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) chemical tagging survey of about a million Galactic FGK stars, we estimate the number of independent dimensions of the space defined by the stellar chemical element abundances [X/Fe]. This leads to a way to study the origin of elements from observed chemical abundances using principal component analysis. We explore abundances in several environments, including solar neighbourhood thin/thick disc stars, halo metal-poor stars, globular clusters, open clusters, the Large Magellanic Cloud and the Fornax dwarf spheroidal galaxy. By studying solar-neighbourhood stars, we confirm the universality of the r-process that tends to produce [neutron-capture elements/Fe] in a constant ratio. We find that, especially at low metallicity, the production of r-process elements is likely to be associated with the production of alpha -elements. This may support the core-collapse supernovae as the r-process site. We also verify the overabundances of light s-process elements at low metallicity, and find that the relative contribution decreases at higher metallicity, which suggests that this lighter elements primary process may be associated with massive stars. We also verify the contribution from the s-process in low-mass asymptotic giant branch (AGB) stars at high metallicity. Our analysis reveals two types of core-collapse supernovae: one produces mainly alpha -elements, the other produces both alpha -elements and Fe-peak elements with a large enhancement of heavy Fe-peak elements which may be the contribution from hypernovae. Excluding light elements that may be subject to internal mixing, K and Cu, we find that the [X/Fe] chemical abundance space in the solar neighbourhood has about six independent dimensions both at low metallicity (-3.5 [lap] [Fe/H] [lap]-2) and high metallicity ([Fe/H] [gap]-1). However the dimensions come from very different origins in these two cases. The extra contribution from low-mass AGB stars at high metallicity compensates the dimension loss due to the homogenization of the core-collapse supernovae ejecta. Including the extra dimensions from [Fe/H], K, Cu and the light elements, the number of independent dimensions of the [X/Fe]+[Fe/H] chemical space in the solar neighbourhood for HERMES is about eight to nine. Comparing fainter galaxies and the solar neighbourhood, we find that the chemical space for fainter galaxies such as Fornax and the Large Magellanic Cloud has a higher dimensionality. This is consistent with the slower star formation history of fainter galaxies. We find that open clusters have more chemical space dimensions than the nearby metal-rich field stars. This suggests that a survey of stars in a larger Galactic volume than the solar neighbourhood may show about one more dimension in its chemical abundance space.
In preparation for the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) chemical tagging survey of about a million Galactic FGK stars, we estimate the number of independent dimensions of the space defined by the stellar chemical element abundances [X/Fe]. This leads to a way to study the origin of elements from observed chemical abundances using principal component analysis. We explore abundances in several environments, including solar neighbourhood thin/thick disc stars, halo metal-poor stars, globular clusters, open clusters, the Large Magellanic Cloud and the Fornax dwarf spheroidal galaxy. By studying solar-neighbourhood stars, we confirm the universality of the r-process that tends to produce [neutron-capture elements/Fe] in a constant ratio. We find that, especially at low metallicity, the production of r-process elements is likely to be associated with the production of α-elements. This may support the core-collapse supernovae as the r-process site. We also verify the overabundances of light s-process elements at low metallicity, and find that the relative contribution decreases at higher metallicity, which suggests that this lighter elements primary process may be associated with massive stars. We also verify the contribution from the s-process in low-mass asymptotic giant branch (AGB) stars at high metallicity. Our analysis reveals two types of core-collapse supernovae: one produces mainly α-elements, the other produces both α-elements and Fe-peak elements with a large enhancement of heavy Fe-peak elements which may be the contribution from hypernovae. Excluding light elements that may be subject to internal mixing, K and Cu, we find that the [X/Fe] chemical abundance space in the solar neighbourhood has about six independent dimensions both at low metallicity (−3.5 ≲ [Fe/H] ≲−2) and high metallicity ([Fe/H] ≳−1). However the dimensions come from very different origins in these two cases. The extra contribution from low-mass AGB stars at high metallicity compensates the dimension loss due to the homogenization of the core-collapse supernovae ejecta. Including the extra dimensions from [Fe/H], K, Cu and the light elements, the number of independent dimensions of the [X/Fe]+[Fe/H] chemical space in the solar neighbourhood for HERMES is about eight to nine. Comparing fainter galaxies and the solar neighbourhood, we find that the chemical space for fainter galaxies such as Fornax and the Large Magellanic Cloud has a higher dimensionality. This is consistent with the slower star formation history of fainter galaxies. We find that open clusters have more chemical space dimensions than the nearby metal-rich field stars. This suggests that a survey of stars in a larger Galactic volume than the solar neighbourhood may show about one more dimension in its chemical abundance space.
In preparation for the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) chemical tagging survey of about a million Galactic FGK stars, we estimate the number of independent dimensions of the space defined by the stellar chemical element abundances [X/Fe]. This leads to a way to study the origin of elements from observed chemical abundances using principal component analysis. We explore abundances in several environments, including solar neighbourhood thin/thick disc stars, halo metal-poor stars, globular clusters, open clusters, the Large Magellanic Cloud and the Fornax dwarf spheroidal galaxy. By studying solar-neighbourhood stars, we confirm the universality of the r-process that tends to produce [neutron-capture elements/Fe] in a constant ratio. We find that, especially at low metallicity, the production of r-process elements is likely to be associated with the production of [alpha]-elements. This may support the core-collapse supernovae as the r-process site. We also verify the overabundances of light s-process elements at low metallicity, and find that the relative contribution decreases at higher metallicity, which suggests that this lighter elements primary process may be associated with massive stars. We also verify the contribution from the s-process in low-mass asymptotic giant branch (AGB) stars at high metallicity. Our analysis reveals two types of core-collapse supernovae: one produces mainly [alpha]-elements, the other produces both [alpha]-elements and Fe-peak elements with a large enhancement of heavy Fe-peak elements which may be the contribution from hypernovae. Excluding light elements that may be subject to internal mixing, K and Cu, we find that the [X/Fe] chemical abundance space in the solar neighbourhood has about six independent dimensions both at low metallicity (-3.5 [Fe/H] -2) and high metallicity ([Fe/H] -1). However the dimensions come from very different origins in these two cases. The extra contribution from low-mass AGB stars at high metallicity compensates the dimension loss due to the homogenization of the core-collapse supernovae ejecta. Including the extra dimensions from [Fe/H], K, Cu and the light elements, the number of independent dimensions of the [X/Fe]+[Fe/H] chemical space in the solar neighbourhood for HERMES is about eight to nine. Comparing fainter galaxies and the solar neighbourhood, we find that the chemical space for fainter galaxies such as Fornax and the Large Magellanic Cloud has a higher dimensionality. This is consistent with the slower star formation history of fainter galaxies. We find that open clusters have more chemical space dimensions than the nearby metal-rich field stars. This suggests that a survey of stars in a larger Galactic volume than the solar neighbourhood may show about one more dimension in its chemical abundance space. [PUBLICATION ABSTRACT]
Author Freeman, K. C.
Bland-Hawthorn, J.
Kobayashi, C.
Ting, Y. S.
De Silva, G. M.
Author_xml – sequence: 1
  givenname: Y. S.
  surname: Ting
  fullname: Ting, Y. S.
  email: ting.yuansen@gmail.com
  organization: 1Research School of Astronomy & Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia
– sequence: 2
  givenname: K. C.
  surname: Freeman
  fullname: Freeman, K. C.
  organization: 1Research School of Astronomy & Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia
– sequence: 3
  givenname: C.
  surname: Kobayashi
  fullname: Kobayashi, C.
  organization: 1Research School of Astronomy & Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia
– sequence: 4
  givenname: G. M.
  surname: De Silva
  fullname: De Silva, G. M.
  organization: 4Australian Astronomical Observatory, PO Box 296, NSW 1710, Australia
– sequence: 5
  givenname: J.
  surname: Bland-Hawthorn
  fullname: Bland-Hawthorn, J.
  organization: 5Institute of Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
BookMark eNp1kF1LwzAUhoNMcJv-h-KVN505TZsPLwQZfsH8QPQ6pGmKLW1SmxW3f2-6iReKucg55LzngTwzNLHOGoQiwAsI57xeAKFZnAhKFwkGCBfhbLE5QNOfwQRNMSZZzBnAEZp5X2OMU5LQKbp47iurq041kXZtF9h2HSmrmq2vfORspN9NW-kwVvlgC2W18ZHvVCjH6LBUjTcn33WO3m6uX5d38erp9n55tYodgZTFjAuOyyxRAGWhC8FzXBQGsDYGoMCiVCrPcp2zggpqDC1ZxkDoUkF45NqQOTrbc7vefQzGr2VbeW2aRlnjBi8BY85JljAcoqe_orUb-vAbL0XCWUpFmobQ5T70WTVmK7u-alW_DRg5CpW1HL3J0ZschcqdULmRD48vuzYAyB7ghu6f9fjPOvkCJqd9Tw
ContentType Journal Article
Copyright 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS 2012
2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS
Copyright_xml – notice: 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS 2012
– notice: 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS
DBID 8FD
H8D
L7M
7TG
KL.
DOI 10.1111/j.1365-2966.2011.20387.x
DatabaseName Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts - Academic

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 1255
ExternalDocumentID 2611812111
MNR20387
10.1111/j.1365-2966.2011.20387.x
Genre article
Feature
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AANHP
ABAZT
ABEJV
ABNGD
ACRPL
ACYXJ
ADNMO
8FD
AAMMB
ABGNP
ABVLG
ACUXJ
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
ALXQX
AMNDL
ANAKG
H8D
JXSIZ
L7M
7TG
KL.
ID FETCH-LOGICAL-o3147-78980f52a11fdcd98b0dde10cee11d09faab5bcb7d696ee6f75719cfa1bcb8ce3
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302695600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-8711
IngestDate Fri Jul 11 16:22:18 EDT 2025
Sun Jul 13 03:52:05 EDT 2025
Wed Jan 22 16:19:38 EST 2025
Wed Aug 28 03:23:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords stars: AGB and post-AGB
methods: data analysis
ISM: evolution
stars: abundances
supernovae: general
ISM: abundances
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-o3147-78980f52a11fdcd98b0dde10cee11d09faab5bcb7d696ee6f75719cfa1bcb8ce3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 928746944
PQPubID 42411
PageCount 25
ParticipantIDs proquest_miscellaneous_1008835270
proquest_journals_928746944
wiley_primary_10_1111_j_1365_2966_2011_20387_x_MNR20387
oup_primary_10_1111_j_1365-2966_2011_20387_x
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAbbrev Monthly Notices of the Royal Astronomical Society
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Oxford University Press
References 2004; 21
2010; 509
1984; 280
2003a; 404
2006; 451
1982; 263
2005; 619
2000; 530
2011a; 730
2001; 376
2001; 370
2010; 512
2010; 511
2005; 627
2005b; 441
2006; 448
1993; 413
2006; 447
2001; 379
2002a; 579
2007; 18
2004; 42
2010; 724
2010; 721
2005; 632
2010; 720
1999; 341
2004a; 152
2008; 487
1999; 346
2012; 744
2004; 425
1998; 497
2008; 481
2008; 480
1997; 325
1997; 326
1999; 37
2010b; 464
1999; 350
1996; 471
2011; 141
1990; 354
2008; 134
2009; 504
1990; 234
2009; 505
2008; 492
1990; 351
1981; 97
2009; 501
2009; 502
2011; 142
2005; 130
2007; 380
2002; 114
2006; 372
2006; 132
2006; 131
2010; 142
2010; 140
1995; 451
1996; 467
2003; 407
2004; 413
2010; 710
2002; 40
2007; 133
2007; 375
2003; 3
2008; 678
1977; 216
2004; 416
2004; 415
2004; 414
2008; 60
2006; 367
2004; 418
2011c; 739
2002; 572
2002; 576
2011b; 414
2008; 329
2009
2002; 577
2008; 688
2004
2008; 687
2008; 685
2003; 410
2008; 681
2007; 476
2011; 106
2010; 139
2002; 565
1995; 109
2002b; 579
1995; 101
2003; 422
1993; 275
2007; 464
2007; 465
2002; 390
2007; 462
2005a; 436
2007b; 469
1975; 196
1971; 166
1998; 85
2001; 548
2004; 601
2004; 606
2004; 605
2005b
2005a
2002; 387
2010a; 708
1988; 333
2000; 120
2004; 612
2011; 413
2011; 412
2001; 561
2007; 442
2006; 636
1994; 433
2011; 535
2011; 414
2011; 83
2009; 695
2009; 696
2009; 692
2011; 530
2001; 551
1989; 53
2002; 124
2002; 123
2005; 129
2003b; 406
1994; 91
2005; 11
2003; 20
1999; 517
2003; 584
2001; 554
2001; 557
2003; 340
2009; 47
2007; 666
2007; 667
2007; 661
2003; 591
1998; 115
2009; 394
2008; 389
1998; 116
1999; 525
2003; 598
2004; 128
2006; 777
2006; 653
2003; 592
2007; 655
2007a; 128
2011; 729
1978; 225
2006; 644
2003; 126
2003; 125
1999a; 516
2006; 645
2006; 641
1999b; 525
2010; 407
2010; 404
2005; 430
2011; 739
2010; 523
2004b; 607
2010; 403
2010; 524
2005; 433
2010; 522
2010; 401
1995; 98
1998; 338
2005; 439
2009; 497
2005; 43
1999; 2
2009; 494
2009; 26
2009; 137
2009; 707
2005; 440
2000; 544
1997; 485
1977; 57
2009; 703
1998; 36
References_xml – volume: 465
  start-page: 815
  year: 2007
  publication-title: A&A
– volume: 561
  start-page: 1034
  year: 2001
  publication-title: ApJ
– volume: 739
  start-page: 5
  year: 2011
  publication-title: ApJ
– volume: 601
  start-page: 864
  year: 2004
  publication-title: ApJ
– volume: 333
  start-page: L25
  year: 1988
  publication-title: ApJ
– start-page: 53
  year: 2005a
– volume: 120
  start-page: 1841
  year: 2000
  publication-title: AJ
– volume: 591
  start-page: 925
  year: 2003
  publication-title: ApJ
– volume: 530
  start-page: A105
  year: 2011
  publication-title: A&A
– volume: 379
  start-page: 461
  year: 2001
  publication-title: A&A
– volume: 120
  start-page: 2513
  year: 2000
  publication-title: AJ
– volume: 216
  start-page: 797
  year: 1977
  publication-title: ApJ
– volume: 509
  start-page: A88
  year: 2010
  publication-title: A&A
– volume: 134
  start-page: 23
  year: 2008
  publication-title: The Messenger
– volume: 166
  start-page: 153
  year: 1971
  publication-title: ApJ
– volume: 524
  start-page: A58
  year: 2010
  publication-title: A&A
– volume: 522
  start-page: A26
  year: 2010
  publication-title: A&A
– volume: 329
  start-page: 1018
  year: 2008
  publication-title: Astron. Nachr.
– volume: 464
  start-page: 1081
  year: 2007
  publication-title: A&A
– volume: 406
  start-page: 131
  year: 2003b
  publication-title: A&A
– volume: 739
  start-page: L57
  year: 2011c
  publication-title: ApJ
– volume: 476
  start-page: 893
  year: 2007
  publication-title: A&A
– volume: 390
  start-page: 225
  year: 2002
  publication-title: A&A
– volume: 710
  start-page: 1557
  year: 2010
  publication-title: ApJ
– volume: 11
  start-page: 5
  year: 2005
  publication-title: Data Mining Knowledge Discovery J.
– volume: 512
  start-page: A10
  year: 2010
  publication-title: A&A
– volume: 129
  start-page: 1428
  year: 2005
  publication-title: AJ
– volume: 413
  start-page: 1073
  year: 2004
  publication-title: A&A
– volume: 354
  start-page: 630
  year: 1990
  publication-title: ApJ
– volume: 497
  start-page: 388
  year: 1998
  publication-title: ApJ
– volume: 485
  start-page: 370
  year: 1997
  publication-title: ApJ
– volume: 436
  start-page: L9
  year: 2005a
  publication-title: A&A
– volume: 517
  start-page: 193
  year: 1999
  publication-title: ApJ
– volume: 692
  start-page: 1517
  year: 2009
  publication-title: ApJ
– volume: 584
  start-page: L87
  year: 2003
  publication-title: ApJ
– volume: 124
  start-page: 481
  year: 2002
  publication-title: AJ
– volume: 139
  start-page: 1942
  year: 2010
  publication-title: AJ
– volume: 125
  start-page: 875
  year: 2003
  publication-title: AJ
– volume: 375
  start-page: 1280
  year: 2007
  publication-title: MNRAS
– volume: 612
  start-page: 1107
  year: 2004
  publication-title: ApJ
– volume: 696
  start-page: 797
  year: 2009
  publication-title: ApJ
– volume: 525
  start-page: L121
  year: 1999b
  publication-title: ApJ
– volume: 263
  start-page: L23
  year: 1982
  publication-title: ApJ
– volume: 688
  start-page: L13
  year: 2008
  publication-title: ApJ
– volume: 730
  start-page: L14
  year: 2011a
  publication-title: ApJ
– volume: 325
  start-page: 1088
  year: 1997
  publication-title: A&A
– volume: 430
  start-page: 507
  year: 2005
  publication-title: A&A
– volume: 492
  start-page: 823
  year: 2008
  publication-title: A&A
– volume: 390
  start-page: 187
  year: 2002
  publication-title: A&A
– volume: 504
  start-page: 511
  year: 2009
  publication-title: A&A
– volume: 26
  start-page: 314
  year: 2009
  publication-title: Publ. Astron. Soc. Australia
– volume: 141
  start-page: 58
  year: 2011
  publication-title: AJ
– volume: 20
  start-page: 279
  year: 2003
  publication-title: Publ. Astron. Soc. Australia
– volume: 565
  start-page: 385
  year: 2002
  publication-title: ApJ
– volume: 350
  start-page: 955
  year: 1999
  publication-title: A&A
– volume: 577
  start-page: 281
  year: 2002
  publication-title: ApJ
– volume: 687
  start-page: 272
  year: 2008
  publication-title: ApJ
– volume: 142
  start-page: 22
  year: 2011
  publication-title: AJ
– volume: 340
  start-page: 304
  year: 2003
  publication-title: MNRAS
– volume: 137
  start-page: 272
  year: 2009
  publication-title: AJ
– volume: 430
  start-page: 655
  year: 2005
  publication-title: A&A
– volume: 511
  start-page: A56
  year: 2010
  publication-title: A&A
– volume: 707
  start-page: 1466
  year: 2009
  publication-title: ApJ
– start-page: 560
  year: 2009
– volume: 685
  start-page: L43
  year: 2008
  publication-title: ApJ
– volume: 387
  start-page: 560
  year: 2002
  publication-title: A&A
– volume: 480
  start-page: 379
  year: 2008
  publication-title: A&A
– volume: 653
  start-page: 1145
  year: 2006
  publication-title: ApJ
– volume: 389
  start-page: 1828
  year: 2008
  publication-title: MNRAS
– volume: 724
  start-page: 341
  year: 2010
  publication-title: ApJ
– volume: 720
  start-page: L1
  year: 2010
  publication-title: ApJ
– volume: 60
  start-page: 1159
  year: 2008
  publication-title: PASJ
– volume: 632
  start-page: 611
  year: 2005
  publication-title: ApJ
– volume: 123
  start-page: 1647
  year: 2002
  publication-title: AJ
– volume: 777
  start-page: 676
  year: 2006
  publication-title: Nuclear Phys. A
– volume: 641
  start-page: L41
  year: 2006
  publication-title: ApJ
– volume: 380
  start-page: 1255
  year: 2007
  publication-title: MNRAS
– volume: 37
  start-page: 239
  year: 1999
  publication-title: ARA&A
– volume: 18
  start-page: 3438
  year: 2007
  publication-title: Measurement Sci. Technol.
– volume: 412
  start-page: 1265
  year: 2011
  publication-title: MNRAS
– volume: 592
  start-page: L21
  year: 2003
  publication-title: ApJ
– volume: 36
  start-page: 435
  year: 1998
  publication-title: ARA&A
– volume: 607
  start-page: 474
  year: 2004b
  publication-title: ApJ
– volume: 376
  start-page: 232
  year: 2001
  publication-title: A&A
– volume: 551
  start-page: 833
  year: 2001
  publication-title: ApJ
– volume: 43
  start-page: 531
  year: 2005
  publication-title: ARA&A
– volume: 505
  start-page: 139
  year: 2009
  publication-title: A&A
– volume: 476
  start-page: 935
  year: 2007
  publication-title: A&A
– volume: 372
  start-page: 343
  year: 2006
  publication-title: MNRAS
– volume: 695
  start-page: 208
  year: 2009
  publication-title: ApJ
– volume: 3
  start-page: 316
  year: 2003
  publication-title: Chinese J. Astron. Astrophys.
– volume: 467
  start-page: 819
  year: 1996
  publication-title: ApJ
– volume: 655
  start-page: 492
  year: 2007
  publication-title: ApJ
– volume: 433
  start-page: 229
  year: 1994
  publication-title: ApJ
– volume: 579
  start-page: L87
  year: 2002b
  publication-title: ApJ
– volume: 47
  start-page: 371
  year: 2009
  publication-title: ARA&A
– volume: 667
  start-page: 1185
  year: 2007
  publication-title: ApJ
– volume: 280
  start-page: L31
  year: 1984
  publication-title: ApJ
– volume: 605
  start-page: 462
  year: 2004
  publication-title: ApJ
– volume: 97
  start-page: 391
  year: 1981
  publication-title: A&A
– volume: 130
  start-page: 2140
  year: 2005
  publication-title: AJ
– volume: 535
  start-page: A30
  year: 2011
  publication-title: A&A
– volume: 530
  start-page: 783
  year: 2000
  publication-title: ApJ
– volume: 116
  start-page: 1286
  year: 1998
  publication-title: AJ
– volume: 234
  start-page: 211
  year: 1990
  publication-title: A&A
– volume: 576
  start-page: L141
  year: 2002
  publication-title: ApJ
– volume: 414
  start-page: 3231
  year: 2011b
  publication-title: MNRAS
– volume: 125
  start-page: 684
  year: 2003
  publication-title: AJ
– start-page: 25
  year: 2005b
– volume: 418
  start-page: 989
  year: 2004
  publication-title: A&A
– volume: 721
  start-page: 582
  year: 2010
  publication-title: ApJ
– volume: 367
  start-page: 1329
  year: 2006
  publication-title: MNRAS
– volume: 407
  start-page: 691
  year: 2003
  publication-title: A&A
– volume: 40
  start-page: 487
  year: 2002
  publication-title: ARA&A
– volume: 619
  start-page: 427
  year: 2005
  publication-title: ApJ
– volume: 407
  start-page: 1866
  year: 2010
  publication-title: MNRAS
– volume: 442
  start-page: 237
  year: 2007
  publication-title: Phys. Rep.
– volume: 225
  start-page: 357
  year: 1978
  publication-title: ApJ
– volume: 416
  start-page: 1117
  year: 2004
  publication-title: A&A
– volume: 401
  start-page: 1334
  year: 2010
  publication-title: MNRAS
– volume: 414
  start-page: 2893
  year: 2011
  publication-title: MNRAS
– volume: 681
  start-page: 1524
  year: 2008
  publication-title: ApJ
– volume: 708
  start-page: 560
  year: 2010a
  publication-title: ApJ
– volume: 666
  start-page: 1189
  year: 2007
  publication-title: ApJ
– volume: 579
  start-page: 616
  year: 2002a
  publication-title: ApJ
– volume: 109
  start-page: 2757
  year: 1995
  publication-title: AJ
– volume: 501
  start-page: 519
  year: 2009
  publication-title: A&A
– volume: 26
  start-page: 11
  year: 2009
  publication-title: Publ. Astron. Soc. Australia
– volume: 126
  start-page: 2385
  year: 2003
  publication-title: AJ
– volume: 404
  start-page: 187
  year: 2003a
  publication-title: A&A
– volume: 462
  start-page: 851
  year: 2007
  publication-title: A&A
– volume: 448
  start-page: 717
  year: 2006
  publication-title: A&A
– volume: 394
  start-page: 1051
  year: 2009
  publication-title: MNRAS
– volume: 47
  start-page: 481
  year: 2009
  publication-title: ARA&A
– volume: 115
  start-page: 1640
  year: 1998
  publication-title: AJ
– volume: 132
  start-page: 85
  year: 2006
  publication-title: AJ
– volume: 326
  start-page: 751
  year: 1997
  publication-title: A&A
– volume: 606
  start-page: 1006
  year: 2004
  publication-title: ApJ
– volume: 2
  start-page: 17
  issue: 2
  year: 1999
  publication-title: J. Risk
– volume: 724
  start-page: 975
  year: 2010
  publication-title: ApJ
– volume: 592
  start-page: 906
  year: 2003
  publication-title: ApJ
– volume: 451
  start-page: L49
  year: 1995
  publication-title: ApJ
– volume: 557
  start-page: 802
  year: 2001
  publication-title: ApJ
– volume: 114
  start-page: 1293
  year: 2002
  publication-title: PASP
– volume: 133
  start-page: 694
  year: 2007
  publication-title: AJ
– volume: 678
  start-page: 1351
  year: 2008
  publication-title: ApJ
– volume: 410
  start-page: 527
  year: 2003
  publication-title: A&A
– volume: 522
  start-page: A9
  year: 2010
  publication-title: A&A
– volume: 422
  start-page: 871
  year: 2003
  publication-title: Nat
– volume: 85
  start-page: 161
  year: 1998
  publication-title: Space Sci. Rev.
– volume: 123
  start-page: 404
  year: 2002
  publication-title: AJ
– volume: 42
  start-page: 385
  year: 2004
  publication-title: ARA&A
– volume: 91
  start-page: 749
  year: 1994
  publication-title: ApJS
– volume: 497
  start-page: 563
  year: 2009
  publication-title: A&A
– volume: 132
  start-page: 137
  year: 2006
  publication-title: AJ
– volume: 132
  start-page: 1645
  year: 2006
  publication-title: AJ
– start-page: 277
  year: 2004
– volume: 57
  start-page: 395
  year: 1977
  publication-title: A&A
– volume: 433
  start-page: 185
  year: 2005
  publication-title: A&A
– volume: 275
  start-page: 101
  year: 1993
  publication-title: A&A
– volume: 645
  start-page: 613
  year: 2006
  publication-title: ApJ
– volume: 98
  start-page: 617
  year: 1995
  publication-title: ApJS
– volume: 412
  start-page: 843
  year: 2011
  publication-title: MNRAS
– volume: 413
  start-page: 2199
  year: 2011
  publication-title: MNRAS
– volume: 661
  start-page: 1152
  year: 2007
  publication-title: ApJ
– volume: 481
  start-page: 481
  year: 2008
  publication-title: A&A
– volume: 142
  start-page: 28
  year: 2010
  publication-title: The Messenger
– volume: 544
  start-page: 302
  year: 2000
  publication-title: ApJ
– volume: 351
  start-page: 121
  year: 1990
  publication-title: ApJ
– volume: 554
  start-page: 1044
  year: 2001
  publication-title: ApJ
– volume: 390
  start-page: 561
  year: 2002
  publication-title: A&A
– volume: 43
  start-page: 481
  year: 2005
  publication-title: ARA&A
– volume: 346
  start-page: L37
  year: 1999
  publication-title: A&A
– volume: 523
  start-page: A17
  year: 2010
  publication-title: A&A
– volume: 414
  start-page: 931
  year: 2004
  publication-title: A&A
– volume: 370
  start-page: 194
  year: 2001
  publication-title: A&A
– volume: 636
  start-page: 804
  year: 2006
  publication-title: ApJ
– volume: 152
  start-page: 113
  year: 2004a
  publication-title: ApJS
– volume: 511
  start-page: L10
  year: 2010
  publication-title: A&A
– volume: 440
  start-page: 321
  year: 2005
  publication-title: A&A
– volume: 471
  start-page: 254
  year: 1996
  publication-title: ApJ
– volume: 83
  start-page: 157
  year: 2011
  publication-title: Rev. Modern Phys.
– volume: 509
  start-page: A93
  year: 2010
  publication-title: A&A
– volume: 390
  start-page: 235
  year: 2002
  publication-title: A&A
– volume: 487
  start-page: 373
  year: 2008
  publication-title: A&A
– volume: 404
  start-page: 1529
  year: 2010
  publication-title: MNRAS
– volume: 415
  start-page: 993
  year: 2004
  publication-title: A&A
– volume: 341
  start-page: 499
  year: 1999
  publication-title: A&A
– volume: 106
  start-page: 201104
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 131
  start-page: 455
  year: 2006
  publication-title: AJ
– volume: 196
  start-page: 525
  year: 1975
  publication-title: ApJ
– volume: 627
  start-page: 238
  year: 2005
  publication-title: ApJ
– volume: 703
  start-page: 1061
  year: 2009
  publication-title: ApJ
– volume: 598
  start-page: 1163
  year: 2003
  publication-title: ApJ
– volume: 451
  start-page: 621
  year: 2006
  publication-title: A&A
– volume: 21
  start-page: 110
  year: 2004
  publication-title: Publ. Astron. Soc. Australia
– volume: 572
  start-page: 861
  year: 2002
  publication-title: ApJ
– volume: 53
  start-page: 197
  year: 1989
  publication-title: Geochim. Cosmochim. Acta
– volume: 744
  start-page: L14
  year: 2012
  publication-title: ApJ
– volume: 101
  start-page: 181
  year: 1995
  publication-title: ApJS
– volume: 469
  start-page: 319
  year: 2007b
  publication-title: A&A
– volume: 128
  start-page: 38
  year: 2007a
  publication-title: The Messenger
– volume: 721
  start-page: L92
  year: 2010
  publication-title: ApJ
– volume: 548
  start-page: 592
  year: 2001
  publication-title: ApJ
– volume: 441
  start-page: 533
  year: 2005b
  publication-title: A&A
– volume: 403
  start-page: 1413
  year: 2010
  publication-title: MNRAS
– volume: 525
  start-page: 886
  year: 1999
  publication-title: ApJ
– volume: 644
  start-page: 229
  year: 2006
  publication-title: ApJ
– volume: 502
  start-page: 569
  year: 2009
  publication-title: A&A
– volume: 729
  start-page: 16
  year: 2011
  publication-title: ApJ
– volume: 130
  start-page: 597
  year: 2005
  publication-title: AJ
– volume: 120
  start-page: 1014
  year: 2000
  publication-title: AJ
– volume: 464
  start-page: 72
  year: 2010b
  publication-title: Nat
– volume: 530
  start-page: A94
  year: 2011
  publication-title: A&A
– volume: 413
  start-page: 641
  year: 1993
  publication-title: ApJ
– volume: 494
  start-page: 1083
  year: 2009
  publication-title: A&A
– volume: 140
  start-page: 293
  year: 2010
  publication-title: AJ
– volume: 338
  start-page: 637
  year: 1998
  publication-title: A&A
– volume: 447
  start-page: 623
  year: 2006
  publication-title: A&A
– volume: 439
  start-page: 129
  year: 2005
  publication-title: A&A
– volume: 43
  start-page: 435
  year: 2005
  publication-title: ARA&A
– volume: 128
  start-page: 1177
  year: 2004
  publication-title: AJ
– volume: 425
  start-page: 697
  year: 2004
  publication-title: A&A
– volume: 516
  start-page: 381
  year: 1999a
  publication-title: ApJ
SSID ssj0004326
Score 2.4288287
Snippet In preparation for the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) chemical tagging survey of about a million Galactic FGK stars, we...
ABSTRACT In preparation for the High Efficiency and Resolution Multi‐Element Spectrograph (HERMES) chemical tagging survey of about a million Galactic FGK...
SourceID proquest
wiley
oup
SourceType Aggregation Database
Publisher
StartPage 1231
SubjectTerms Astrophysics
Cosmology
ISM: abundances
ISM: evolution
methods: data analysis
Principal components analysis
Stars & galaxies
stars: abundances
stars: AGB and post‐AGB
supernovae: general
Title Principal component analysis on chemical abundances spaces
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2011.20387.x
https://www.proquest.com/docview/928746944
https://www.proquest.com/docview/1008835270
Volume 421
WOSCitedRecordID wos000302695600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwoELggW0YQEFCXEJqeK8bHNblZe0tKzYIpVTFCeOtlJJqqZbtT-Tf8TYjt2wPLQgcYkSW7YTz5exZzwPhJ5XAQlFhEufFwHxY1oGPi3S0k8qKg_aIh5wRekPZDKhsxk7Gwy-GV-YzYLUNd1u2fK_khrKgNjSdfYvyG07hQK4B6LDFcgO12sR_kyrz1Xcj6_LptZG5Cb0SO0VNkQAl14g0ozaA7ZSdMaEJrtTU68vFjuvbqR1XGtMCbS24aSVCvRGd9PZfVoVQJck5cvQOx9adKyE6FStp0NvZMtPgZvsZDonpa-1xa-Fdz5fbNS-9t3QGw_7uglp5BH3dRNXdJBap7a3VlIMOUqAIXf8VmgerAzvmE7GYph0rP2oOzSGPZYLSy_uLd-wYUv-vDSY7nX81lCe3xuT0X40btsmuW4rtSsYTz6pyhvoZkgSJhnt9ONs76obqQyA9rt_NC775SBXXC-lBNSXo9RGaHoX3ekkGPdEI-8eGoj6EB0ZSOzcF6661yqz9hA5Y5DLmpU6voHK0WIOQpJ6uo9eWbC6FqyuAavb1K4Bq7sHq6vB-gB9fvtmOnrvd9k8_CbCMfEJZTSokjDHuCqLklEewNKKA9ilYVwGrMpznvCCkzJlqRBpRRKCWVHlGAppIaKH6KCG9zhCbskZqXJBgbXwuMCcB3kUlyxivMSkIpGDXsKMZUsdryXryblmgjM5wZma4GzroGMztVn3I7cZk4kgUhbHDnpma4H1yvO0vBbNZSvDfVMpwJDAQURR5DdDZj8NmRmYPPrnlsfo9v6Xe4wO1qtL8QTdKjbrebt6qlD3Hb6Nsjk
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principal+component+analysis+on+chemical+abundances+spaces&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Ting%2C+Y.+S.&rft.au=Freeman%2C+K.+C.&rft.au=Kobayashi%2C+C.&rft.au=De+Silva%2C+G.+M.&rft.date=2012-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=421&rft.issue=2&rft.spage=1231&rft.epage=1255&rft_id=info:doi/10.1111%2Fj.1365-2966.2011.20387.x&rft.externalDBID=10.1111%252Fj.1365-2966.2011.20387.x&rft.externalDocID=MNR20387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon