Artificial Intelligence for Predicting Treatment Failure in Neurourology: From Automated Urodynamics to Precision Management
Artificial intelligence (AI) has emerged as a transformative tool for advancing diagnosis, monitoring, and treatment planning in neurourology. This review synthesizes recent progress in AI-based models for predicting treatment failure in neurogenic lower urinary tract dysfunction. Machine learning a...
Uloženo v:
| Vydáno v: | International neurourology journal s. 55 - 64 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
대한배뇨장애요실금학회
01.11.2025
|
| Témata: | |
| ISSN: | 2093-4777, 2093-6931 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Artificial intelligence (AI) has emerged as a transformative tool for advancing diagnosis, monitoring, and treatment planning in neurourology. This review synthesizes recent progress in AI-based models for predicting treatment failure in neurogenic lower urinary tract dysfunction. Machine learning and deep learning algorithms applied to urodynamic, clinical, and neuroimaging data have demonstrated strong potential to identify patients at risk of therapeutic nonresponse and improve individualized management. Automated systems now enable precise interpretation of complex bladder signals, multimodal data integration, and real-time prediction of treatment outcomes, marking a shift toward data-driven precision medicine. Nevertheless, most published studies remain limited by small, single-center datasets and a lack of external validation. Broader clinical adoption will require multicenter collaboration, adherence to standardized reporting frameworks such as TRIPOD-ML and PRO BAST-AI, and integration of explainable AI to ensure transparency, reproducibility, and clinician trust. KCI Citation Count: 0 |
|---|---|
| AbstractList | Artificial intelligence (AI) has emerged as a transformative tool for advancing diagnosis, monitoring, and treatment planning in neurourology. This review synthesizes recent progress in AI-based models for predicting treatment failure in neurogenic lower urinary tract dysfunction. Machine learning and deep learning algorithms applied to urodynamic, clinical, and neuroimaging data have demonstrated strong potential to identify patients at risk of therapeutic nonresponse and improve individualized management. Automated systems now enable precise interpretation of complex bladder signals, multimodal data integration, and real-time prediction of treatment outcomes, marking a shift toward data-driven precision medicine. Nevertheless, most published studies remain limited by small, single-center datasets and a lack of external validation. Broader clinical adoption will require multicenter collaboration, adherence to standardized reporting frameworks such as TRIPOD-ML and PRO BAST-AI, and integration of explainable AI to ensure transparency, reproducibility, and clinician trust. KCI Citation Count: 0 |
| Author | Beom Jin Park Seunghyun Youn |
| Author_xml | – sequence: 1 fullname: Seunghyun Youn organization: (GRK Partners Research Center, Seoul, Korea) – sequence: 2 fullname: Beom Jin Park organization: (Department of Radiology and Advanced Medical Imaging Institute, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea) |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003269605$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNotzM9LwzAcBfAgE5xzZ685C5tJ0_SbeivD6WD-QOq5fJumJVubQJodBv7xbrrHg_dOn1sycd4ZQu45W8qEi0frdstESiZ4tuRSXZFpwnKxyHLBJ5efAsANmY_jjp2SpsAkTMlPEaJtrbbY042Lpu9tZ5w2tPWBfgbTWB2t62gZDMbBuEjXaPtDMNQ6-m4OwZ_a--74RNfBD7Q4RD9gNA39Dr45OhysHmn0Z0vb0XpH39BhZ87WHblusR_N_LIzUq6fy9XrYvvxslkV24WDTC1UgrwRWmngdZ1nQoicaWgbhapVTaYBtWJZowAwRWkSI5WUNSa65RwgqcWMPPyzLrTVXtvKo_3bzlf7UBVf5abiDE4IgPgFuVtm6g |
| ContentType | Journal Article |
| DBID | ACYCR |
| DOI | 10.5213/inj.2550316.158 |
| DatabaseName | Korean Citation Index |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2093-6931 |
| EndPage | 64 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_10780677 |
| GroupedDBID | --- 5-W 53G 8JR 8XY AAKDD ABDBF ACUHS ACYCR ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV DIK E3Z EBD EF. F5P GROUPED_DOAJ HYE OK1 RPM |
| ID | FETCH-LOGICAL-n768-82a1d3c8c71bb9633390c7fd8a8f8d6c7ac806d877a4a5e2e5855ba2cf11772b3 |
| ISSN | 2093-4777 |
| IngestDate | Wed Dec 10 07:55:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-n768-82a1d3c8c71bb9633390c7fd8a8f8d6c7ac806d877a4a5e2e5855ba2cf11772b3 |
| Notes | https://doi.org/10.5213/inj.2550316.158 |
| OpenAccessLink | http://dx.doi.org/10.5213/inj.2550316.158 |
| PageCount | 10 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10780677 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11 |
| PublicationDecade | 2020 |
| PublicationTitle | International neurourology journal |
| PublicationYear | 2025 |
| Publisher | 대한배뇨장애요실금학회 |
| Publisher_xml | – name: 대한배뇨장애요실금학회 |
| SSID | ssj0000447057 |
| Score | 2.3413 |
| SecondaryResourceType | online_first |
| Snippet | Artificial intelligence (AI) has emerged as a transformative tool for advancing diagnosis, monitoring, and treatment planning in neurourology. This review... |
| SourceID | nrf |
| SourceType | Open Website |
| StartPage | 55 |
| SubjectTerms | 비뇨기과학 |
| Title | Artificial Intelligence for Predicting Treatment Failure in Neurourology: From Automated Urodynamics to Precision Management |
| URI | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003269605 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | International Neurourology Journal, 2025, 29(0), , pp.55-64 |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2093-6931 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000447057 issn: 2093-4777 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKghAXxFO8ZQl8qrLkbZubW7oCBKseCtpb5Tg2ZJd1V6FdLRL_mD_B2EmTbA9oOSBF0citXCfzaR7u-BuEXsWm1HlZykBSZYLURGXATUEDo0JZFo6fxfch-_KRHh6yoyM-H41-b8_CnH-n1rKLC372X1UNY6Bsd3T2H9TdTQoDIIPS4Q5qh_uVFC9qX_7TkGgM-DZdPeG8dv_L-ErnRVdhfiArV5vudj48VQdc_gRLIiCsXZ2OxWa9grgWItPPYG2bDvaeF2Jetw16dotojvvy-H630Q7mHg-fxFcbg8359nNjx876dFsEGn79Ayxrvj1Q1G5PxFl7Tm8LKDKbEDZ1VRuzt4RnhE_dyCR0l_uIEsHIbEr4jIjMCxkRoRcE4akT2IQIEASZMMLYdh7uBQGT9xYzDnkSpLTtC6P7sZy3rqax0g0xcOvvGxL1XU8CUY1jtKjs8T4kXWD58v2o4Zi_zNm940svsXafqGr5dbU8qZeQm7xfQqLNHF_fNXQ9phlng_zfhw1pSkPPTNs9RkNF5ZbyemchEAnZ2gwiocUddLtNYbBooHcXjbS9h25-aos07qNfPQLxEIEYEIh7BOIOgbhFIK4sHiLwDXb4wx3-8AB_eL3CHf5wj78HaHEwW0zfBW2Tj8BCphuwWEZlopiiUVGAM0gSHipqSiaZYWWuqFTw0kpGqUxlpmMN6W1WyFgZV20QF8lDtGdXVj9CWJvIgMOCDEdlqS4yGeUmhmiVG53muSwfo5fwzrxW_qKdJ1f61lN0qwf7M7S3rjf6ObqhztfVj_qFV-wfai-PrA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+for+Predicting+Treatment+Failure+in+Neurourology%3A+From+Automated+Urodynamics+to+Precision+Management&rft.jtitle=International+neurourology+journal&rft.au=Seunghyun+Youn&rft.au=Beom+Jin+Park&rft.date=2025-11-01&rft.pub=%EB%8C%80%ED%95%9C%EB%B0%B0%EB%87%A8%EC%9E%A5%EC%95%A0%EC%9A%94%EC%8B%A4%EA%B8%88%ED%95%99%ED%9A%8C&rft.issn=2093-4777&rft.eissn=2093-6931&rft.spage=55&rft.epage=64&rft_id=info:doi/10.5213%2Finj.2550316.158&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10780677 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-4777&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-4777&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-4777&client=summon |