Deep Learning-Based Uroflowmetry Curve Analysis Improves the Noninvasive Diagnosis of Lower Urinary Tract Symptoms

Purpose: This study aimed to evaluate the performance of an artificial intelligence (AI)-based analysis of uroflowmetry (UFM) curve images, enhanced with customized preprocessing techniques, to improve diagnostic accuracy for bladder outlet obstruction (BOO) and detrusor underactivity (DUA). Methods...

Full description

Saved in:
Bibliographic Details
Published in:International neurourology journal pp. 73 - 82
Main Authors: Jong Hoon Lee, Yungon Lee, Kwang Jin Ko, Myung Jin Chung, Chung Un Lee, Jung Hyun Kim, Deok-Hyun Han
Format: Journal Article
Language:English
Published: 대한배뇨장애요실금학회 01.11.2025
Subjects:
ISSN:2093-4777, 2093-6931
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose: This study aimed to evaluate the performance of an artificial intelligence (AI)-based analysis of uroflowmetry (UFM) curve images, enhanced with customized preprocessing techniques, to improve diagnostic accuracy for bladder outlet obstruction (BOO) and detrusor underactivity (DUA). Methods: We retrospectively analyzed 2,579 UFM curve images from patients who underwent urodynamic study (UDS), including 725 normal and 1,854 abnormal cases (736 BOO and 1,387 DUA). A VGG16 convolutional neural network model was developed to perform 3 binary classification tasks: normal versus abnormal, BOO versus non-BOO, and DUA versus non DUA. To improve model performance, we implemented a preprocessing pipeline consisting of denoising, cropping, axis scaling, and color-coding of clinical parameters such as voided volume and postvoid residual volume (PVR). Model performance was evaluated using 5-fold stratified cross-validation and the area under the receiver operating characteristic curve (AUROC). Results: Abnormal cases demonstrated a lower median maximum flow rate (8.9 mL/sec vs. 14.8 mL/sec), higher PVR (60.0 mL vs. 20.0 mL), and lower voiding efficiency (78.5% vs. 92.5%) than normal cases. Within the abnormal group, the BOO subgroup showed a higher PVR (80.0 mL) than the non-BOO subgroup (30.0 mL). After applying the preprocessing pipeline, model performance improved, with AUROC increasing from 0.807±0.024 to 0.827±0.016 for normal vs. abnormal classification, from 0.749±0.019 to 0.773±0.034 for BOO classification, and from 0.693±0.016 to 0.709±0.031 for DUA classification. Conclusions: AI-based analysis of UFM curve images, enhanced through customized preprocessing, improved diagnostic accuracy in patients with lower urinary tract symptoms, effectively identifying BOO and DUA. This noninvasive method may serve as an adjunct or screening tool to reduce reliance on invasive UDS. KCI Citation Count: 0
AbstractList Purpose: This study aimed to evaluate the performance of an artificial intelligence (AI)-based analysis of uroflowmetry (UFM) curve images, enhanced with customized preprocessing techniques, to improve diagnostic accuracy for bladder outlet obstruction (BOO) and detrusor underactivity (DUA). Methods: We retrospectively analyzed 2,579 UFM curve images from patients who underwent urodynamic study (UDS), including 725 normal and 1,854 abnormal cases (736 BOO and 1,387 DUA). A VGG16 convolutional neural network model was developed to perform 3 binary classification tasks: normal versus abnormal, BOO versus non-BOO, and DUA versus non DUA. To improve model performance, we implemented a preprocessing pipeline consisting of denoising, cropping, axis scaling, and color-coding of clinical parameters such as voided volume and postvoid residual volume (PVR). Model performance was evaluated using 5-fold stratified cross-validation and the area under the receiver operating characteristic curve (AUROC). Results: Abnormal cases demonstrated a lower median maximum flow rate (8.9 mL/sec vs. 14.8 mL/sec), higher PVR (60.0 mL vs. 20.0 mL), and lower voiding efficiency (78.5% vs. 92.5%) than normal cases. Within the abnormal group, the BOO subgroup showed a higher PVR (80.0 mL) than the non-BOO subgroup (30.0 mL). After applying the preprocessing pipeline, model performance improved, with AUROC increasing from 0.807±0.024 to 0.827±0.016 for normal vs. abnormal classification, from 0.749±0.019 to 0.773±0.034 for BOO classification, and from 0.693±0.016 to 0.709±0.031 for DUA classification. Conclusions: AI-based analysis of UFM curve images, enhanced through customized preprocessing, improved diagnostic accuracy in patients with lower urinary tract symptoms, effectively identifying BOO and DUA. This noninvasive method may serve as an adjunct or screening tool to reduce reliance on invasive UDS. KCI Citation Count: 0
Author Kwang Jin Ko
Jong Hoon Lee
Myung Jin Chung
Chung Un Lee
Yungon Lee
Deok-Hyun Han
Jung Hyun Kim
Author_xml – sequence: 1
  fullname: Jong Hoon Lee
  organization: (Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea)
– sequence: 2
  fullname: Yungon Lee
  organization: (Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea)
– sequence: 3
  fullname: Kwang Jin Ko
  organization: (Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea)
– sequence: 4
  fullname: Myung Jin Chung
  organization: (Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea)
– sequence: 5
  fullname: Chung Un Lee
  organization: (Department of Urology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Korea)
– sequence: 6
  fullname: Jung Hyun Kim
  organization: (Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea)
– sequence: 7
  fullname: Deok-Hyun Han
  organization: (Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003269668$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotjM9PwjAYhhuDiYicvfZsMmzXdd2OCP4gWTTReV6-bV-xwFrSTgj_vVN5L-97eN7nmoyss0jILWczGXNxb-xmFkvJ4jSdcSEuyDhmuYjSXPDReSdKqSsyDWHDhiSJYlKNiV8i7mmB4K2x6-gBArb00zu9c8cOe3-ii29_QDq3sDsFE-iq23t3wED7L6SvbngdIJiBWBpYW_eLOE0Ld0Q_eIyFQVF6aHr6cer2vevCDbnUsAs4PfeElE-P5eIlKt6eV4t5EVmViggb3SYxR4kxyrYGmSHkmda15LnWSQ2YQqa5lAk0UCNLExk3Uuu85SCZbMWE3P1rrdfVtjGVA_PXa1dtfTV_L1cVZypjqcrFD3BEZFY
ContentType Journal Article
DBID ACYCR
DOI 10.5213/inj.2550266.133
DatabaseName Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2093-6931
EndPage 82
ExternalDocumentID oai_kci_go_kr_ARTI_10780679
GroupedDBID ---
5-W
53G
8JR
8XY
AAKDD
ABDBF
ACUHS
ACYCR
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
DIK
E3Z
EBD
EF.
F5P
GROUPED_DOAJ
HYE
OK1
RPM
ID FETCH-LOGICAL-n763-ecfd421e5e2e5dba58ea98ffb519ff4bae6a8f1554acabe06452c5ff9d1a505d3
ISSN 2093-4777
IngestDate Wed Dec 10 07:55:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n763-ecfd421e5e2e5dba58ea98ffb519ff4bae6a8f1554acabe06452c5ff9d1a505d3
Notes https://doi.org/10.5213/inj.2550266.133
OpenAccessLink http://dx.doi.org/10.5213/inj.2550266.133
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10780679
PublicationCentury 2000
PublicationDate 2025-11
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11
PublicationDecade 2020
PublicationTitle International neurourology journal
PublicationYear 2025
Publisher 대한배뇨장애요실금학회
Publisher_xml – name: 대한배뇨장애요실금학회
SSID ssj0000447057
Score 2.3411949
SecondaryResourceType online_first
Snippet Purpose: This study aimed to evaluate the performance of an artificial intelligence (AI)-based analysis of uroflowmetry (UFM) curve images, enhanced with...
SourceID nrf
SourceType Open Website
StartPage 73
SubjectTerms 비뇨기과학
Title Deep Learning-Based Uroflowmetry Curve Analysis Improves the Noninvasive Diagnosis of Lower Urinary Tract Symptoms
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003269668
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Neurourology Journal, 2025, 29(0), , pp.73-82
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2093-6931
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000447057
  issn: 2093-4777
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZtV8Zexq506zYEm56CO8exbOnRuYxu7cpgGXRPQZalLL3YwU3S9t_vSJZjp4zRPQyMEcdGODkf58bRdxD6IKg2np17sc6EFwYp2EEqlRdLHwQqiyQTdthEfHLCTk_5t63t3foszOoiznN2c8Pn_1XVIANlm6Oz_6Du9aYggDUoHe6gdrjfS_FDpeY1berU64OXyjo_wNpeFNeXalGCCViWqxYbSVVWMEwPpt3RVGdXwva0D6suvIqw5NhMU4N9quO7Y3O2qvP99nK-KBzd-VnTEt9UGC1bJlyW56n99dWUgGnnsAD0Has1un6C7dmUHF0LeO_LLO8cFWt03C6dbPBr6Vyvq1wE1B3hq7FGRn3CBqahYzQknBI-MJK-by7zKCYJI6MB4SOSULugJPHtIiE8NAvWJwksEtJnhLF6H24XCWzeGNPA5z0vjN3IGNXIIu68UGXAq7kqdSgQ_MnJQMBjyC5m-dkB5GOQw0YH3V6v8ad1D8EdN7tB6H0uZ5NpMTkvJ5C2fJ5ADs5MRW8bPQhiylmrNGAjijCMfUtau_4ZFUuV-ZSPdz4EgqS81K0gafwEPXbZDU4qVD5FWyp_hh5-df0bz1FpwIk3wYnb4MQWnLgGJ67BiQGcuAVOvAYnLjS24MQOnNiCE9fgfIHGn0bjwaHnpn54Ofg6T0mdhUFXURUomqWCMiU40zqFVEPrMBUqEkybKFhIkSpDtxhIqjXPugKi-az3Eu3kRa72EKYxPKZdGfmGdTKSQvMozbJe0JV-pFT6Cr2Hf8rq4i86eX2vt_bRowbib9DOolyqt2hXrhazq_KdVedvhxuUrg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Uroflowmetry+Curve+Analysis+Improves+the+Noninvasive+Diagnosis+of+Lower+Urinary+Tract+Symptoms&rft.jtitle=International+neurourology+journal&rft.au=Jong+Hoon+Lee&rft.au=Yungon+Lee&rft.au=Kwang+Jin+Ko&rft.au=Myung+Jin+Chung&rft.date=2025-11-01&rft.pub=%EB%8C%80%ED%95%9C%EB%B0%B0%EB%87%A8%EC%9E%A5%EC%95%A0%EC%9A%94%EC%8B%A4%EA%B8%88%ED%95%99%ED%9A%8C&rft.issn=2093-4777&rft.eissn=2093-6931&rft.spage=73&rft.epage=82&rft_id=info:doi/10.5213%2Finj.2550266.133&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10780679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-4777&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-4777&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-4777&client=summon