Data-Driven Optimization under Uncertainty in the Era of Big Data and Deep Learning: General Frameworks, Algorithms, and Applications
This dissertation deals with the development of fundamental data-driven optimization under uncertainty, including its modeling frameworks, solution algorithms, and a wide variety of applications. Specifically, three research aims are proposed, including data-driven distributionally robust optimizati...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Format: | Dissertation |
| Sprache: | Englisch |
| Veröffentlicht: |
ProQuest Dissertations & Theses
01.01.2020
|
| Schlagworte: | |
| ISBN: | 9798672146201 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!

