Data-Driven Optimization under Uncertainty in the Era of Big Data and Deep Learning: General Frameworks, Algorithms, and Applications

This dissertation deals with the development of fundamental data-driven optimization under uncertainty, including its modeling frameworks, solution algorithms, and a wide variety of applications. Specifically, three research aims are proposed, including data-driven distributionally robust optimizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ning, Chao
Format: Dissertation
Sprache:Englisch
Veröffentlicht: ProQuest Dissertations & Theses 01.01.2020
Schlagworte:
ISBN:9798672146201
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!