Experimental and Numerical Investigation of Hydrogen Embrittlement Effect on Microdamage Evolution of Advanced High-Strength Dual-Phase Steel

The effect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical approaches. In the experimental section, the tensile test was performed under different testing conditions, i.e., vacuum, in-situ hydrogen plasma c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Metals and materials international Ročník 27; číslo 7; s. 2276 - 2291
Hlavní autori: Asadipoor, M., Kadkhodapour, J., Pourkamali Anaraki, A., Sharifi, S. M. H., Darabi, A. Ch, Barnoush, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Seoul The Korean Institute of Metals and Materials 01.07.2021
Springer Nature B.V
대한금속·재료학회
Predmet:
ISSN:1598-9623, 2005-4149
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The effect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical approaches. In the experimental section, the tensile test was performed under different testing conditions, i.e., vacuum, in-situ hydrogen plasma charging (IHPC), ex-situ electrochemical hydrogen charging (EEHC), and ex-situ + in-situ hydrogen charging (EIHC) conditions. The post-mortem analysis was conducted on the fracture surface of specimens to illuminate the impact of hydrogen on the microstructure and mechanical properties. The results showed that under all of hydrogen charging conditions, the yield stress and ultimate tensile strength were slightly sensitive to hydrogen, while tensile elongation was profoundly affected. While only ductile dimple features were observed on the fracture surfaces in vacuum condition, the results indicated a simultaneous action of the hydrogen-enhanced decohesion (HEDE) and hydrogen enhanced localized plasticity (HELP) mechanisms of HE, depending on the local concentration of hydrogen under the IHPC and EEHC conditions. At the EIHC condition, the HEDE model was the dominant failure mechanism, which was manifested by the HE-induced large crack. In the numerical approach, a finite-element analysis was developed to include the Gorson–Tvergaard–Needleman (GTN) damage model in Abaqus™ software. To numerically describe the damage mechanism, the GTN damage model was utilized in the 3D finite-element model. After calibration of damage parameters, the predicted damage mechanisms for two testing conditions, i.e., vacuum and EIHC, were compared with experimental results. Graphic Abstract
AbstractList The efect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical approaches. In the experimental section, the tensile test was performed under diferent testing conditions, i.e., vacuum, in-situ hydrogen plasma charging (IHPC), ex-situ electrochemical hydrogen charging(EEHC), and ex-situ+in-situ hydrogen charging (EIHC) conditions. The post-mortem analysis was conducted on the fracturesurface of specimens to illuminate the impact of hydrogen on the microstructure and mechanical properties. The resultsshowed that under all of hydrogen charging conditions, the yield stress and ultimate tensile strength were slightly sensitive tohydrogen, while tensile elongation was profoundly afected. While only ductile dimple features were observed on the fracturesurfaces in vacuum condition, the results indicated a simultaneous action of the hydrogen-enhanced decohesion (HEDE)and hydrogen enhanced localized plasticity (HELP) mechanisms of HE, depending on the local concentration of hydrogenunder the IHPC and EEHC conditions. At the EIHC condition, the HEDE model was the dominant failure mechanism,which was manifested by the HE-induced large crack. In the numerical approach, a fnite-element analysis was developed toinclude the Gorson–Tvergaard–Needleman (GTN) damage model in Abaqus™ software. To numerically describe the damagemechanism, the GTN damage model was utilized in the 3D fnite-element model. After calibration of damage parameters, thepredicted damage mechanisms for two testing conditions, i.e., vacuum and EIHC, were compared with experimental results. KCI Citation Count: 0
The effect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical approaches. In the experimental section, the tensile test was performed under different testing conditions, i.e., vacuum, in-situ hydrogen plasma charging (IHPC), ex-situ electrochemical hydrogen charging (EEHC), and ex-situ + in-situ hydrogen charging (EIHC) conditions. The post-mortem analysis was conducted on the fracture surface of specimens to illuminate the impact of hydrogen on the microstructure and mechanical properties. The results showed that under all of hydrogen charging conditions, the yield stress and ultimate tensile strength were slightly sensitive to hydrogen, while tensile elongation was profoundly affected. While only ductile dimple features were observed on the fracture surfaces in vacuum condition, the results indicated a simultaneous action of the hydrogen-enhanced decohesion (HEDE) and hydrogen enhanced localized plasticity (HELP) mechanisms of HE, depending on the local concentration of hydrogen under the IHPC and EEHC conditions. At the EIHC condition, the HEDE model was the dominant failure mechanism, which was manifested by the HE-induced large crack. In the numerical approach, a finite-element analysis was developed to include the Gorson–Tvergaard–Needleman (GTN) damage model in Abaqus™ software. To numerically describe the damage mechanism, the GTN damage model was utilized in the 3D finite-element model. After calibration of damage parameters, the predicted damage mechanisms for two testing conditions, i.e., vacuum and EIHC, were compared with experimental results.Graphic Abstract
The effect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical approaches. In the experimental section, the tensile test was performed under different testing conditions, i.e., vacuum, in-situ hydrogen plasma charging (IHPC), ex-situ electrochemical hydrogen charging (EEHC), and ex-situ + in-situ hydrogen charging (EIHC) conditions. The post-mortem analysis was conducted on the fracture surface of specimens to illuminate the impact of hydrogen on the microstructure and mechanical properties. The results showed that under all of hydrogen charging conditions, the yield stress and ultimate tensile strength were slightly sensitive to hydrogen, while tensile elongation was profoundly affected. While only ductile dimple features were observed on the fracture surfaces in vacuum condition, the results indicated a simultaneous action of the hydrogen-enhanced decohesion (HEDE) and hydrogen enhanced localized plasticity (HELP) mechanisms of HE, depending on the local concentration of hydrogen under the IHPC and EEHC conditions. At the EIHC condition, the HEDE model was the dominant failure mechanism, which was manifested by the HE-induced large crack. In the numerical approach, a finite-element analysis was developed to include the Gorson–Tvergaard–Needleman (GTN) damage model in Abaqus™ software. To numerically describe the damage mechanism, the GTN damage model was utilized in the 3D finite-element model. After calibration of damage parameters, the predicted damage mechanisms for two testing conditions, i.e., vacuum and EIHC, were compared with experimental results. Graphic Abstract
Author Sharifi, S. M. H.
Barnoush, A.
Pourkamali Anaraki, A.
Kadkhodapour, J.
Asadipoor, M.
Darabi, A. Ch
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0002-3055-7710
  surname: Asadipoor
  fullname: Asadipoor, M.
  organization: Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Department of Mechanical Engineering, Shahid Rajaee Teacher Training University
– sequence: 2
  givenname: J.
  orcidid: 0000-0002-5106-2098
  surname: Kadkhodapour
  fullname: Kadkhodapour, J.
  organization: Department of Mechanical Engineering, Shahid Rajaee Teacher Training University
– sequence: 3
  givenname: A.
  orcidid: 0000-0002-6735-5055
  surname: Pourkamali Anaraki
  fullname: Pourkamali Anaraki, A.
  email: ali_pourkamali@sru.ac.ir
  organization: Department of Mechanical Engineering, Shahid Rajaee Teacher Training University
– sequence: 4
  givenname: S. M. H.
  surname: Sharifi
  fullname: Sharifi, S. M. H.
  organization: Department of Mechanical Engineering, Petroleum University of Technology
– sequence: 5
  givenname: A. Ch
  orcidid: 0000-0001-9460-7572
  surname: Darabi
  fullname: Darabi, A. Ch
  organization: Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Materials Science and Strength of Materials, Institute for Materials Testing, University of Stuttgart
– sequence: 6
  givenname: A.
  orcidid: 0000-0002-5584-5516
  surname: Barnoush
  fullname: Barnoush, A.
  organization: Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002735260$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpFkc9u1DAQxi1UJLaFF-BkiRMHgx3bSXxclZRdqfwRLWfLccZZt1l7cZwVPATvjLcL4jD6NKPfjEbfd4kuQgyA0GtG3zFKm_czq6SghFalaN0ywp6hVUWpJIIJdYFWTKqWqLriL9DlPD8UiHFWrdDv7ucBkt9DyGbCJgz487IvA1u6bTjCnP1oso8BR4c3v4YURwi42_fJ5zzBaQ93zoHNuDCfvE1xMHszAu6OcVr-ba6HowkWBrzx447c5QRhzDv8YTET-bozM-C7DDC9RM-dmWZ49Vev0Peb7v56Q26_fNxer29JYIpl4pQA2zvpRE0HUH1T183AnZBtaxre2Io3ddtY0RplFCjeM0sZc9D3TEgngV-ht-e7ITn9aL2Oxj_pGPVj0utv91utWl4rpgr75sweUvyxFEP0Q1xSKO_p4nlbC0nlieJnaj4kH0ZI_ylG9Skjfc5Il4z0U0aa8T_Hy4fi
ContentType Journal Article
Copyright The Korean Institute of Metals and Materials 2020. corrected publication 2020
The Korean Institute of Metals and Materials 2020. corrected publication 2020.
Copyright_xml – notice: The Korean Institute of Metals and Materials 2020. corrected publication 2020
– notice: The Korean Institute of Metals and Materials 2020. corrected publication 2020.
DBID 7SR
8BQ
8FD
JG9
ACYCR
DOI 10.1007/s12540-020-00681-1
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Korean Citation Index
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4149
EndPage 2291
ExternalDocumentID oai_kci_go_kr_ARTI_9836919
10_1007_s12540_020_00681_1
GrantInformation_xml – fundername: Research Council of Norway
  grantid: HyF-Lex (244068/E30) project.
GroupedDBID -EM
06D
0R~
0VY
123
1N0
2.D
203
29M
2JY
2KG
2VQ
30V
4.4
406
408
40D
5VS
67Z
8FE
8FG
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KB.
KOV
KVFHK
LLZTM
MA-
MZR
N2Q
NDZJH
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
P19
P2P
P9N
PDBOC
PT4
PT5
Q2X
R89
R9I
RLLFE
ROL
RSV
S1Z
S26
S27
S28
S3B
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
Z45
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
ZMTXR
ZZE
~A9
7SR
8BQ
8FD
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
JG9
AABYN
AAFGU
AAGCJ
AAPBV
AAUCO
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
Z5O
Z7S
Z88
ID FETCH-LOGICAL-n191t-f94ecbf5f460de9b7667d3f4588a737c237687c48a9a9e93b1c011febb145f5e3
IEDL.DBID RSV
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522584600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1598-9623
IngestDate Tue Nov 21 21:42:25 EST 2023
Thu Sep 25 00:41:29 EDT 2025
Fri Feb 21 02:48:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Ex-situ electrochemical hydrogen charging
Damage evolution
GTN damage model
In-situ hydrogen plasma charging
Hydrogen embrittlement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-n191t-f94ecbf5f460de9b7667d3f4588a737c237687c48a9a9e93b1c011febb145f5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6735-5055
0000-0002-5106-2098
0000-0002-5584-5516
0000-0002-3055-7710
0000-0001-9460-7572
PQID 2548645059
PQPubID 326276
PageCount 16
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9836919
proquest_journals_2548645059
springer_journals_10_1007_s12540_020_00681_1
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Metals and materials international
PublicationTitleAbbrev Met. Mater. Int
PublicationYear 2021
Publisher The Korean Institute of Metals and Materials
Springer Nature B.V
대한금속·재료학회
Publisher_xml – name: The Korean Institute of Metals and Materials
– name: Springer Nature B.V
– name: 대한금속·재료학회
References KoyamaMTasanCCAkiyamaETsuzakiKRaabeDHydrogen-assisted decohesion and localized plasticity in dual-phase steelActa Mater.2014701741871:CAS:528:DC%2BC2cXms1Ggsrc%3D
LoidlMKolkOHydrogen Embrittlement in HSSs Limits Use in Lightweight Body in White Design-High strength steels (HSSs) can fail due to hydrogen embrittlement under certain circumstances, which hinders their use in the body in white designAdv. Mater. Process.20111693221:CAS:528:DC%2BC3MXksFGktbc%3D
SunJJiangTSunYWangYLiuYA lamellar structured ultrafine grain ferrite-martensite dual-phase steel and its resistance to hydrogen embrittlementJ. Alloys Compd.20176983903991:CAS:528:DC%2BC28XitFKrtL3E
DepoverTHajilouDWanDWangABarnoushKVAssessment of the potential of hydrogen plasma charging as compared to conventional electrochemical hydrogen charging on dual phase steelMater. Sci. Eng. A20197546136211:CAS:528:DC%2BC1MXms1Gltr8%3D
D. Bhattacharya, Developments in advanced high strength steels, in Proceedings of Proceedings of the Joint International Conference of HSLA Steels, Sanya (2005), pp. 70–73
DepoverTVerbekenKThe detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-CX alloys: An experimental proof of the HELP mechanismInt. J. Hydrogen Energy2018435305030611:CAS:528:DC%2BC1cXjsVSnsA%3D%3D
L. Duprez, K. Verbeken, M. Verhaege, Effect of hydrogen on the mechanical properties of multiphase high strength steels, in Effect of Hydrogen on Materials (2009), pp. 62–69
TvergaardVNeedlemanAAnalysis of the cup-cone fracture in a round tensile barActa Metall.1984321157169
VenezuelaJTapia-BastidasCZhouQDepoverTVerbekenKGrayEAtrensADetermination of the equivalent hydrogen fugacity during electrochemical charging of 3.5 NiCrMoV steelCorros. Sci.2018132901061:CAS:528:DC%2BC2sXitVektrfK
DepoverTEscobarDPWallaertEZermoutZVerbekenKEffect of hydrogen charging on the mechanical properties of advanced high strength steelsInt. J. Hydrogen Energy2014399464746561:CAS:528:DC%2BC2cXhs1yls7w%3D
AyatollahiMRDarabiACChamaniHRKadkhodapourJ3D micromechanical modeling of failure and damage evolution in dual phase steel based on a real 2D microstructureActa Mech. Solida Sin.201629195110
DaviesRGHydrogen embrittlement of dual-phase steelsMetall. Trans. A1981129166716721:CAS:528:DyaL3MXlvFSktb4%3D
NagumoMFundamentals of hydrogen embrittlement2016SingaporeSpringer239
IchiiKKoyamaMTasanCCTsuzakiKComparative study of hydrogen embrittlement in stable and metastable high-entropy alloysScr. Mater.201815074771:CAS:528:DC%2BC1cXkt1Kmtr8%3D
WanDDengYBarnoushAHydrogen embrittlement effect observed by IHPCon a ferritic alloyScr. Mater.201815124271:CAS:528:DC%2BC1cXmsF2msbc%3D
LiuQVenezuelaJZhangMZhouQAtrensAHydrogen trapping in some advanced high strength steelsCorros. Sci.20161117707851:CAS:528:DC%2BC28XhtVOitLrM
TakakuwaOYamabeJMatsunagaHFuruyaYMatsuokaSComprehensive understanding of ductility loss mechanisms in various steels with external and internal hydrogenMetall. Mater. Trans. A20174811571757321:CAS:528:DC%2BC2sXhsV2lsLzK
LaureysADepoverTPetrovRVerbekenKMicrostructural characterization of hydrogen-induced cracking in TRIP-assisted steel by EBSDMater. Charact.20161121691791:CAS:528:DC%2BC2MXitV2mt77N
DepoverTVerbekenKHydrogen trapping and hydrogen induced mechanical degradation in lab cast Fe–C–Cr alloysMater. Sci. Eng. A20166691341491:CAS:528:DC%2BC28XovVamtLc%3D
DepoverTVercruysseFElmahdyAVerleysenPVerbekenKEvaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditionsInt. J. Impact Eng.2019123118125
DjukicMBBakicGMZeravcicVSSedmakARajicicBThe synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesionEng. Fract. Mech.2019216106528
BirnbaumHKSofronisPHydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fractureMater. Sci. Eng. A19941761–21912021:CAS:528:DyaK2cXjtVCmt7c%3D
KoyamaMAkiyamaELeeYKRaabeDTsuzakiKOverview of hydrogen embrittlement in high-Mn steelsInt. J. Hydrogen Energy2017421712706127231:CAS:528:DC%2BC2sXksV2rtbY%3D
M.O.H.S.E.N Dadfarnia, A.K.I.H.I.D.E. Nagao, B.P. Somerday, P.E. Schembri, J.W. Foulk III, K.A. Nibur, D.K. Balch, R.O. Ritchie, P. Sofronis, Modeling hydrogen-induced fracture and crack propagation in high strength steels, in Materials Performance in Hydrogen Environments, Proceedings of the 2016 International Hydrogen Conference, Jackson Lake Lodge, Moran, WY, USA (ASM International, Warrendale, PA 2017), pp. 572–80
SilversteinREliezerDTal-GutelmacherEHydrogen trapping in alloys studied by thermal desorption spectrometryJ. Alloys Compd.20187475115221:CAS:528:DC%2BC1cXktlyms7s%3D
SunSGuJChenNThe influence of hydrogen on the sub-structure of the martensite and ferrite dual-phase steelScr. Metall.19892310173517371:CAS:528:DyaL1MXmtlOgs7w%3D
SasakiDKoyamaMNoguchiHFactors affecting hydrogen-assisted cracking in a commercial tempered martensitic steel: Mn segregation, MnS, and the stress state around abnormal cracksMater. Sci. Eng. A201564072811:CAS:528:DC%2BC2MXhtVaitrzP
SongJCurtinWAAtomic mechanism and prediction of hydrogen embrittlement in ironNat. Mater.20131221451511:CAS:528:DC%2BC38Xhs1CktL7P
SoyarslanCGharbiMMTekkayaAEA combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic–martensitic steelInt. J. Solids Struct.20124913160816261:CAS:528:DC%2BC38Xls1Wku7k%3D
SomerdayBPSofronisPNiburKASan MarchiCKirchheimRElucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrationsActa Mater.20136116615361701:CAS:528:DC%2BC3sXht1SjsbbL
BarnoushAVehoffHIn situ electrochemical nanoindentation: A technique for local examination of hydrogen embrittlementCorros. Sci.20085012592671:CAS:528:DC%2BD1cXit1Gjsw%3D%3D
YuHOlsenJSAlvaroAQiaoLHeJZhangZHydrogen informed Gurson model for hydrogen embrittlement simulationEng. Fract. Mech.2019217106542
NagumoMHydrogen related failure of steels–a new aspectMater. Sci. Technol.20042089409501:CAS:528:DC%2BD2cXos1ynt7w%3D
GursonALContinuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile mediaJ. Eng. Mater. Technol.1977991215
KataniSZiaei-RadSNouriNSaeidiNKadkhodapourJTorabianNSchmauderSMicrostructure modelling of dual-phase steel using SEM micrographs and Voronoi polycrystal modelsMetallogr. Microstruct. Anal.2013231561691:CAS:528:DC%2BC3sXpvV2mt70%3D
I. Tsoupis, M. Merklein, A new way for the adaption of inverse identified GTN-parameters to bending processes, in 13th International LS-DYNA Users Conference (2014), (pp. 1–14)
DmytrakhIMSyrotyukAMLeshchakRLSpecific features of the deformation and fracture of low-alloy steels in hydrogen-containing media: influence of hydrogen concentration in the metalMater. Sci.20185432953081:CAS:528:DC%2BC1cXisFaqsr7M
RonevichJASpeerJGMatlockDKHydrogen embrittlement of commercially produced advanced high strength sheet steelsSAE Int. J. Mater. Manuf.201031255267
BN Popov, JW Lee, MB Djukic, Hydrogen permeation and hydrogen-induced cracking, in Handbook of Environmental Degradation of Materials (William Andrew Publishing, 2018), pp. 133–162.
AtrensALiuQTapia-BastidasCGrayEIrwantoBVenezuelaJLiuQInfluence of hydrogen on steel components for clean energyCorros. Mater. Degrad.201811326
HuYDongCLuoHXiaoKZhongPLiXStudy on the hydrogen embrittlement of Aermet100 using hydrogen permeation and SSRT techniquesMetall. Mater. Trans. A2017489404640571:CAS:528:DC%2BC2sXpt1altLo%3D
LaureysAVan den EeckhoutEPetrovRVerbekenKEffect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen chargingActa Mater.20171271922021:CAS:528:DC%2BC2sXhslSlu7o%3D
McMahonCJJrHydrogen-induced intergranular fracture of steelsEng. Fract. Mech.2001686773788
LaureysADepoverTPetrovRVerbekenKCharacterization of hydrogen-induced cracking in TRIP-assisted steelsInt. J. Hydrogen Energy2015404716901169121:CAS:528:DC%2BC2MXhtVOku7zF
KumamotoTKoyamaMTsuzakiKStrain rate sensitivity of microstructural damage evolution in a dual-phase steel pre-charged with hydrogenProcedia Struct. Integr.201813710715
HachetGMetsueAOudrissAFeaugasXInfluence of hydrogen on the elastic properties of nickel single crystal: A numerical and experimental investigationActa Mater.20181482802881:CAS:528:DC%2BC1cXivVans7o%3D
KumarBSKainVSinghMVishwanadhBInfluence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steelMater. Sci. Eng. A20177001401511:CAS:528:DC%2BC2sXpvFCgsr0%3D
AbbasiMKetabchiMIzadkhahHFatmehsariaDHAghbashANIdentification of GTN model parameters by application of response surface methodologyProcedia Eng.201110415420
FalkenbergRBrocksWDietzelWScheiderIModelling the effect of hydrogen on ductile tearing resistance of steels: dedicated to Professor Dr. Hermann Riedel on the occasion of his 65th birthdayInt. J. Mater. Res.201010189899961:CAS:528:DC%2BC3cXht1Gju7nF
KirchheimRRevisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocationsScr. Mater.201062267701:CAS:528:DC%2BD1MXhsFKlt73E
https://www.ssab.com/products/brands/docol/products/docol-1200M. Accessed 15 July 2019
DadfarniaMNagaoAWangSMartinMLSomerdayBPSofronisPRecent advances on hydrogen embrittlement of structural materialsInt. J. Fract.20151961–22232431:CAS:528:DC%2BC2MXitV2nu73I
GangloffRPSomerdayBPGaseous hydrogen embrittlement of materials in energy technologies: the problem, its characterization and effects on particular alloy classes2012AmsterdamElsevier
MartinMLRobertsonIMSofronisPInterpreting hydrogen-induced fracture surfaces in terms of deformation processes: a new approachActa Mater.2011599368036871:CAS:528:DC%2BC3MXkslCjsLg%3D
UthaisangsukVPrahlUBleckWMicromechanical modelling of damage behaviour of multiphase steelsComput. Mater. Sci.200843127351:CAS:528:DC%2BD1cXntFSjt7c%3D
DjukicMBZeravcicVSBakicGMSedmakARajicicBHydrogen damage of steels: a case study and hydrogen embrittlement modelEng. Fail.
References_xml – reference: SunSGuJChenNThe influence of hydrogen on the sub-structure of the martensite and ferrite dual-phase steelScr. Metall.19892310173517371:CAS:528:DyaL1MXmtlOgs7w%3D
– reference: SasakiDKoyamaMNoguchiHFactors affecting hydrogen-assisted cracking in a commercial tempered martensitic steel: Mn segregation, MnS, and the stress state around abnormal cracksMater. Sci. Eng. A201564072811:CAS:528:DC%2BC2MXhtVaitrzP
– reference: DepoverTEscobarDPWallaertEZermoutZVerbekenKEffect of hydrogen charging on the mechanical properties of advanced high strength steelsInt. J. Hydrogen Energy2014399464746561:CAS:528:DC%2BC2cXhs1yls7w%3D
– reference: TvergaardVOn localization in ductile materials containing spherical voidsInt. J. Fract.1982184237252
– reference: SomerdayBPSofronisPNiburKASan MarchiCKirchheimRElucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrationsActa Mater.20136116615361701:CAS:528:DC%2BC3sXht1SjsbbL
– reference: LaureysADepoverTPetrovRVerbekenKCharacterization of hydrogen-induced cracking in TRIP-assisted steelsInt. J. Hydrogen Energy2015404716901169121:CAS:528:DC%2BC2MXhtVOku7zF
– reference: KhoramishadHAkbardoostJAyatollahiMRSize effects on parameters of cohesive zone model in mode I fracture of limestoneInt. J. Damage Mech2014234588605
– reference: DmytrakhIMSyrotyukAMLeshchakRLSpecific features of the deformation and fracture of low-alloy steels in hydrogen-containing media: influence of hydrogen concentration in the metalMater. Sci.20185432953081:CAS:528:DC%2BC1cXisFaqsr7M
– reference: JiangDECarterEAFirst principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metalsActa Mater.20045216480148071:CAS:528:DC%2BD2cXmvVGitro%3D
– reference: MorrisseyLSHandriganSMNakhlaSQuantifying void formation and changes to microstructure during hydrogen charging: a precursor to embrittlement and blisteringMetall. Mater. Trans. A2019503146014671:CAS:528:DC%2BC1cXisFejsrjI
– reference: EscobarDPVerbekenKDuprezLVerhaegeMEvaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopyMater. Sci. Eng. A20125515058
– reference: YamabeJYoshikawaMMatsunagaHMatsuokaSHydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environmentInt. J. Fatigue20171022022131:CAS:528:DC%2BC2sXntFensbw%3D
– reference: BarnoushAVehoffHRecent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleationActa Mater.20105816527452851:CAS:528:DC%2BC3cXpsV2rsLw%3D
– reference: KoyamaMAkiyamaELeeYKRaabeDTsuzakiKOverview of hydrogen embrittlement in high-Mn steelsInt. J. Hydrogen Energy2017421712706127231:CAS:528:DC%2BC2sXksV2rtbY%3D
– reference: JemblieLOldenVAkselsenOMA review of cohesive zone modelling as an approach for numerically assessing hydrogen embrittlement of steel structuresPhilos. Trans. R. Soc. A Math. Phys. Eng. Sci.2017375209820160411
– reference: NagumoMFundamentals of hydrogen embrittlement2016SingaporeSpringer239
– reference: HachetGMetsueAOudrissAFeaugasXInfluence of hydrogen on the elastic properties of nickel single crystal: A numerical and experimental investigationActa Mater.20181482802881:CAS:528:DC%2BC1cXivVans7o%3D
– reference: DjukicMBBakicGMZeravcicVSSedmakARajicicBHydrogen embrittlement of industrial components: prediction, prevention, and modelsCorrosion20167279439611:CAS:528:DC%2BC28XhvVyktbnN
– reference: RyuJHChunYSLeeCSBhadeshiaHKDHSuhDWEffect of deformation on hydrogen trapping and effusion in TRIP-assisted steelActa Mater.20126010408540921:CAS:528:DC%2BC38XnslSjs7w%3D
– reference: BirnbaumHKSofronisPHydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fractureMater. Sci. Eng. A19941761–21912021:CAS:528:DyaK2cXjtVCmt7c%3D
– reference: GangloffRPSomerdayBPGaseous hydrogen embrittlement of materials in energy technologies: the problem, its characterization and effects on particular alloy classes2012AmsterdamElsevier
– reference: NagumoMHydrogen related failure of steels–a new aspectMater. Sci. Technol.20042089409501:CAS:528:DC%2BD2cXos1ynt7w%3D
– reference: OgawaYBirenisDMatsunagaHThøgersenAPrytzØTakakuwaOYamabeJMulti-scale observation of hydrogen-induced, localized plastic deformation in fatigue-crack propagation in a pure ironScr. Mater.201714013171:CAS:528:DC%2BC2sXhtFamtrbM
– reference: M.O.H.S.E.N Dadfarnia, A.K.I.H.I.D.E. Nagao, B.P. Somerday, P.E. Schembri, J.W. Foulk III, K.A. Nibur, D.K. Balch, R.O. Ritchie, P. Sofronis, Modeling hydrogen-induced fracture and crack propagation in high strength steels, in Materials Performance in Hydrogen Environments, Proceedings of the 2016 International Hydrogen Conference, Jackson Lake Lodge, Moran, WY, USA (ASM International, Warrendale, PA 2017), pp. 572–80
– reference: HuYDongCLuoHXiaoKZhongPLiXStudy on the hydrogen embrittlement of Aermet100 using hydrogen permeation and SSRT techniquesMetall. Mater. Trans. A2017489404640571:CAS:528:DC%2BC2sXpt1altLo%3D
– reference: MartinMLDadfarniaMNagaoAWangSSofronisPEnumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materialsActa Mater.20191657347501:CAS:528:DC%2BC1cXisFKhtLjO
– reference: KumarBSKainVSinghMVishwanadhBInfluence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steelMater. Sci. Eng. A20177001401511:CAS:528:DC%2BC2sXpvFCgsr0%3D
– reference: DepoverTVercruysseFElmahdyAVerleysenPVerbekenKEvaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditionsInt. J. Impact Eng.2019123118125
– reference: RonevichJASomerdayBPSan MarchiCWEffects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steelsInt. J. Fatigue2016824975041:CAS:528:DC%2BC2MXhsV2lt7vM
– reference: SunJJiangTSunYWangYLiuYA lamellar structured ultrafine grain ferrite-martensite dual-phase steel and its resistance to hydrogen embrittlementJ. Alloys Compd.20176983903991:CAS:528:DC%2BC28XitFKrtL3E
– reference: WanDDengYBarnoushAHydrogen embrittlement effect observed by IHPCon a ferritic alloyScr. Mater.201815124271:CAS:528:DC%2BC1cXmsF2msbc%3D
– reference: McMahonCJJrHydrogen-induced intergranular fracture of steelsEng. Fract. Mech.2001686773788
– reference: DepoverTHajilouDWanDWangABarnoushKVAssessment of the potential of hydrogen plasma charging as compared to conventional electrochemical hydrogen charging on dual phase steelMater. Sci. Eng. A20197546136211:CAS:528:DC%2BC1MXms1Gltr8%3D
– reference: DadfarniaMNagaoAWangSMartinMLSomerdayBPSofronisPRecent advances on hydrogen embrittlement of structural materialsInt. J. Fract.20151961–22232431:CAS:528:DC%2BC2MXitV2nu73I
– reference: VajraguptaNUthaisangsukVSchmalingBMünstermannSHartmaierABleckWA micromechanical damage simulation of dual phase steels using XFEMComput. Mater. Sci.2012542712791:CAS:528:DC%2BC38XhtVOjs74%3D
– reference: D. Bhattacharya, Developments in advanced high strength steels, in Proceedings of Proceedings of the Joint International Conference of HSLA Steels, Sanya (2005), pp. 70–73
– reference: DjukicMBZeravcicVSBakicGMSedmakARajicicBHydrogen damage of steels: a case study and hydrogen embrittlement modelEng. Fail. Anal.2015584854981:CAS:528:DC%2BC2MXhtVKnurvJ
– reference: BN Popov, JW Lee, MB Djukic, Hydrogen permeation and hydrogen-induced cracking, in Handbook of Environmental Degradation of Materials (William Andrew Publishing, 2018), pp. 133–162.
– reference: KumamotoTKoyamaMTsuzakiKStrain rate sensitivity of microstructural damage evolution in a dual-phase steel pre-charged with hydrogenProcedia Struct. Integr.201813710715
– reference: GursonALContinuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile mediaJ. Eng. Mater. Technol.1977991215
– reference: LynchSPHydrogen embrittlement (HE) phenomena and mechanismsStress corrosion cracking2011SawstonWoodhead Publishing90130
– reference: https://www.ssab.com/products/brands/docol/products/docol-1200M. Accessed 15 July 2019
– reference: DepoverTVerbekenKThe detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-CX alloys: An experimental proof of the HELP mechanismInt. J. Hydrogen Energy2018435305030611:CAS:528:DC%2BC1cXjsVSnsA%3D%3D
– reference: EscobarDPDepoverTDuprezLVerbekenKVerhaegeMCombined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy, and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steelActa Mater.2012606–725932605
– reference: NagaoADadfarniaMSomerdayBPSofronisPRitchieROHydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steelsJ. Mech. Phys. Solids20181124034301:CAS:528:DC%2BC1cXhtVKmsbk%3D
– reference: BilottaGHenaffGHalmDArzaghiMExperimental measurement of out-of-plane displacement in crack propagation under gaseous hydrogenInt. J. Hydrogen Energy2017421510568105781:CAS:528:DC%2BC2sXjsFGqtrc%3D
– reference: TakakuwaOYamabeJMatsunagaHFuruyaYMatsuokaSComprehensive understanding of ductility loss mechanisms in various steels with external and internal hydrogenMetall. Mater. Trans. A20174811571757321:CAS:528:DC%2BC2sXhsV2lsLzK
– reference: I. Tsoupis, M. Merklein, A new way for the adaption of inverse identified GTN-parameters to bending processes, in 13th International LS-DYNA Users Conference (2014), (pp. 1–14)
– reference: IchiiKKoyamaMTasanCCTsuzakiKComparative study of hydrogen embrittlement in stable and metastable high-entropy alloysScr. Mater.201815074771:CAS:528:DC%2BC1cXkt1Kmtr8%3D
– reference: FaleskogJGaoXShihCFCell model for nonlinear fracture analysis—I. Micromechanics calibrationInt. J. Fract.1998894355373
– reference: RonevichJASpeerJGMatlockDKHydrogen embrittlement of commercially produced advanced high strength sheet steelsSAE Int. J. Mater. Manuf.201031255267
– reference: YuHOlsenJSAlvaroAQiaoLHeJZhangZHydrogen informed Gurson model for hydrogen embrittlement simulationEng. Fract. Mech.2019217106542
– reference: SilversteinREliezerDTal-GutelmacherEHydrogen trapping in alloys studied by thermal desorption spectrometryJ. Alloys Compd.20187475115221:CAS:528:DC%2BC1cXktlyms7s%3D
– reference: LoidlMKolkOHydrogen Embrittlement in HSSs Limits Use in Lightweight Body in White Design-High strength steels (HSSs) can fail due to hydrogen embrittlement under certain circumstances, which hinders their use in the body in white designAdv. Mater. Process.20111693221:CAS:528:DC%2BC3MXksFGktbc%3D
– reference: RehrlJMraczekKPichlerAWernerEMechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high-and low strain rate testsMater. Sci. Eng. A20145903603671:CAS:528:DC%2BC3sXhvFWqtbfI
– reference: NovakPYuanRSomerdayBPSofronisPRitchieROA statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steelJ. Mech. Phys. Solids20105822062261:CAS:528:DC%2BC3cXksVentQ%3D%3D
– reference: DjukicMBBakicGMZeravcicVSSedmakARajicicBThe synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesionEng. Fract. Mech.2019216106528
– reference: FalkenbergRBrocksWDietzelWScheiderIModelling the effect of hydrogen on ductile tearing resistance of steels: dedicated to Professor Dr. Hermann Riedel on the occasion of his 65th birthdayInt. J. Mater. Res.201010189899961:CAS:528:DC%2BC3cXht1Gju7nF
– reference: FanYHZhangBYiHLHaoGSSunYYWangJQHanE-HKeWThe role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steelActa Mater.20171391881951:CAS:528:DC%2BC2sXhtlegtrfF
– reference: AbbasiMKetabchiMIzadkhahHFatmehsariaDHAghbashANIdentification of GTN model parameters by application of response surface methodologyProcedia Eng.201110415420
– reference: LiXZhangJAkiyamaEWangYLiQMicrostructural and crystallographic study of hydrogen-assisted cracking in high strength PSB1080 steelInt. J. Hydrogen Energy2018433717898179111:CAS:528:DC%2BC1cXhsVylt7vJ
– reference: SongJCurtinWAAtomic mechanism and prediction of hydrogen embrittlement in ironNat. Mater.20131221451511:CAS:528:DC%2BC38Xhs1CktL7P
– reference: YuHOlsenJSHeJZhangZHydrogen-microvoid interactions at continuum scaleInt. J. Hydrogen Energy2018432110104101281:CAS:528:DC%2BC1cXosVCltrg%3D
– reference: SoyarslanCGharbiMMTekkayaAEA combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic–martensitic steelInt. J. Solids Struct.20124913160816261:CAS:528:DC%2BC38Xls1Wku7k%3D
– reference: KirchheimRRevisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocationsScr. Mater.201062267701:CAS:528:DC%2BD1MXhsFKlt73E
– reference: DepoverTVerbekenKHydrogen trapping and hydrogen induced mechanical degradation in lab cast Fe–C–Cr alloysMater. Sci. Eng. A20166691341491:CAS:528:DC%2BC28XovVamtLc%3D
– reference: UthaisangsukVPrahlUBleckWMicromechanical modelling of damage behaviour of multiphase steelsComput. Mater. Sci.200843127351:CAS:528:DC%2BD1cXntFSjt7c%3D
– reference: KoyamaMTasanCCAkiyamaETsuzakiKRaabeDHydrogen-assisted decohesion and localized plasticity in dual-phase steelActa Mater.2014701741871:CAS:528:DC%2BC2cXms1Ggsrc%3D
– reference: TvergaardVNeedlemanAAnalysis of the cup-cone fracture in a round tensile barActa Metall.1984321157169
– reference: DepoverTWallaertEVerbekenKFractographic analysis of the role of hydrogen diffusion on the hydrogen embrittlement susceptibility of DP steelMater. Sci. Eng. A20166492012081:CAS:528:DC%2BC2MXhs1ehu73J
– reference: BarnoushAVehoffHIn situ electrochemical nanoindentation: A technique for local examination of hydrogen embrittlementCorros. Sci.20085012592671:CAS:528:DC%2BD1cXit1Gjsw%3D%3D
– reference: Avramovic-CingaraGSalehCAJainMKWilkinsonDSVoid nucleation and growth in dual-phase steel 600 during uniaxial tensile testingMetall. Mater. Trans. A200940133117
– reference: MaireEGrabonSAdrienJLorenzinoPAsanumaYTakakuwaOMatsunagaHRole of hydrogen-charging on nucleation and growth of ductile damage in austenitic stainless steelsMaterials201912914261:CAS:528:DC%2BB3cXnsVWqsA%3D%3D
– reference: BC De Cooman, L Chen, HS Kim, Y Estrin, SK Kim, H Voswinckel, State-of-the-science of high manganese TWIP steels for automotive applications, in Microstructure and Texture in Steels (2009), pp. 165–183
– reference: LiuQVenezuelaJZhangMZhouQAtrensAHydrogen trapping in some advanced high strength steelsCorros. Sci.20161117707851:CAS:528:DC%2BC28XhtVOitLrM
– reference: DaviesRGHydrogen embrittlement of dual-phase steelsMetall. Trans. A1981129166716721:CAS:528:DyaL3MXlvFSktb4%3D
– reference: VenezuelaJTapia-BastidasCZhouQDepoverTVerbekenKGrayEAtrensADetermination of the equivalent hydrogen fugacity during electrochemical charging of 3.5 NiCrMoV steelCorros. Sci.2018132901061:CAS:528:DC%2BC2sXitVektrfK
– reference: L. Duprez, K. Verbeken, M. Verhaege, Effect of hydrogen on the mechanical properties of multiphase high strength steels, in Effect of Hydrogen on Materials (2009), pp. 62–69
– reference: LaureysAVan den EeckhoutEPetrovRVerbekenKEffect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen chargingActa Mater.20171271922021:CAS:528:DC%2BC2sXhslSlu7o%3D
– reference: AsadipoorMAnarakiAPKadkhodapourJSharifiSMHBarnoushAMacro-and microscale investigations of hydrogen embrittlement in X70 pipeline steel by in-situ and ex-situ hydrogen charging tensile tests and in-situ electrochemical micro-cantilever bending testMater. Sci. Eng. A20207721387621:CAS:528:DC%2BC1MXit12rsLbE
– reference: AtrensALiuQTapia-BastidasCGrayEIrwantoBVenezuelaJLiuQInfluence of hydrogen on steel components for clean energyCorros. Mater. Degrad.201811326
– reference: KataniSZiaei-RadSNouriNSaeidiNKadkhodapourJTorabianNSchmauderSMicrostructure modelling of dual-phase steel using SEM micrographs and Voronoi polycrystal modelsMetallogr. Microstruct. Anal.2013231561691:CAS:528:DC%2BC3sXpvV2mt70%3D
– reference: LaureysADepoverTPetrovRVerbekenKMicrostructural characterization of hydrogen-induced cracking in TRIP-assisted steel by EBSDMater. Charact.20161121691791:CAS:528:DC%2BC2MXitV2mt77N
– reference: MartinMLRobertsonIMSofronisPInterpreting hydrogen-induced fracture surfaces in terms of deformation processes: a new approachActa Mater.2011599368036871:CAS:528:DC%2BC3MXkslCjsLg%3D
– reference: PeralLBZafraABelzunceJRodríguezCEffects of hydrogen on the fracture toughness of CrMo and CrMoV steels quenched and tempered at different temperaturesInt. J. Hydrogen Energy2019447395339651:CAS:528:DC%2BC1MXnvFOl
– reference: NeedlemanATvergaardVAn analysis of ductile rupture modes at a crack tipJ. Mech. Phys. Solids1987352151183
– reference: RahimidehgolanFMajzoobiGAlinejadFFathi SolaJDetermination of the constants of GTN damage model using experiment, polynomial regression and kriging methodsAppl. Sci.20177111179
– reference: AyatollahiMRDarabiACChamaniHRKadkhodapourJ3D micromechanical modeling of failure and damage evolution in dual phase steel based on a real 2D microstructureActa Mech. Solida Sin.201629195110
SSID ssj0061312
Score 2.4162316
Snippet The effect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical...
The efect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical...
SourceID nrf
proquest
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 2276
SubjectTerms Characterization and Evaluation of Materials
Chemistry and Materials Science
Damage assessment
Dimpling
Dual phase steels
Ductile fracture
Elongation
Engineering Thermodynamics
Evolution
Failure mechanisms
Finite element method
Fracture surfaces
Heat and Mass Transfer
High strength steels
Hydrogen
Hydrogen charging
Hydrogen embrittlement
Hydrogen plasma
Machines
Magnetic Materials
Magnetism
Manufacturing
Materials Science
Mathematical models
Mechanical properties
Metallic Materials
Processes
Solid Mechanics
Tensile tests
Three dimensional models
Ultimate tensile strength
Yield stress
재료공학
Title Experimental and Numerical Investigation of Hydrogen Embrittlement Effect on Microdamage Evolution of Advanced High-Strength Dual-Phase Steel
URI https://link.springer.com/article/10.1007/s12540-020-00681-1
https://www.proquest.com/docview/2548645059
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002735260
Volume 27
WOSCitedRecordID wos000522584600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Metals and Materials International, 2021, 27(7), , pp.2276-2291
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 2005-4149
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061312
  issn: 1598-9623
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEG1EPejBXdxpxKOBySTp5Sg6ogcHccNb06uKYwKZjOBH-M9WZRJmFC96yqEXAq-6qpp6r5qQI2YMy5zACiNHSU6cRFJoHllrTZCZ6zim68cmeL8vHh_ldSMKG7Zs97YkWXvqiditi0V8vO6griGO4M4zB-FO4IMNN7cPrf-F-DSucWYSjjJE90Yq8_seEFLyMnxLL39UROtAc778v19cIUtNYklPxpawSmZ8vkYWp9oNrpPP3lQ7f6pzR_ujccFmQKf6bRQ5LQK9-HBlAdZFeyjqwk7HuI6Oux1TmHOFVD6n38Ah0d57Y8G48qShFVDkkERY9s6fqmd6NtKD6PoZoia9rbwfbJD7897d6UXUPMcQ5XCpq6IgUw8AZiFlHeel4YxxlwSUumqecIv8GsFtKrTU0svExBacR_DGxGkWMp9sktm8yP0WoYHrTHhps4S7VEgjIWmEPMp1UsNCEN1tcgioqFf7orD9NX6fCvVaKkjyL5UUCZOx3CZ7LWiqOXhDBQAIlkJaB8PHLUiT4UmTZkRKAVKqRkrFO3-bvksWushuqYm7e2S2Kkd-n8zb9-plWB7UBvkF9HjcxA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4higQ9UEqpGqCwQhyxFMf2Po6IBgUBESoPcVvtE1BSW3IcJH4E_7kzjq0ExKU9-bAPWfpmZ2Y1831LyCEzhmVOYIWRIyUnTiIpNI-stSbIzHUd0_VjE3w4FPf38qohhU3abve2JFl76jnZrYdFfLzuIK8hjuDO8ymFiIWK-b-v71r_C_FpVuPMJBxliO4NVebjPSCk5GV4k16-q4jWgeb0y__94gZZbxJLejyzhK9kyeeb5POC3OA38tpfkPOnOnd0OJ0VbMZ0QW-jyGkR6ODFlQVYF-0jqQuVjnEdnakdU5hzia18Tv8Bh0T7z40F48rjpq2AYg9JhGXv_KF6pL-mehxdPULUpNeV9-MtcnvavzkZRM1zDFEOl7oqCjL1AGAWUtZ1XhrOGHdJQKqr5gm32F8juE2Fllp6mZjYgvMI3pg4zULmk-9kOS9y_4PQwHUmvLRZwl0qpJGQNEIe5bqpYSGIXoccACpqZJ8Uyl_j96FQo1JBkn-mpEiYjGWH7LagqebgTRQAIFgKaR0MH7UgzYfnIs2IlAKkVI2Uirf_bfo-WR3cXF6oi7Ph-Q5Z62GnS93Eu0uWq3Lqf5IV-1w9Tcq92jj_AlbA36g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS9xAFB2KlqIP_VLRqnUoPhrcbJL5eJS6i9K6LNiKb8N8qrhOSswK_RH-Z-9NsuwqvpQ-5WFmQuDcmXuHe84JIfvMGFY4gR1GjpKcNEuk0Dyx1pogC9dzTDc_m-Cjkbi8lOMFFX_Ddp-1JFtNA7o0xfrwjwuHc-FbHxv6ePVBjUOawP1nOUciPd7Xzy9mZzHkqrbfWUjY1pDpO9nM6--A9BKr8KzUfNEdbZLO8MP_f-5H8r4rOOlRGyGfyBsfP5PVBRvCNfI4WLD5pzo6Opq2jZwJXfDhKCMtAz3566oSoo4OUOyFDsi4jrYuyBTmnCHFz-k7OKjo4KGLbFx51NENKHJLEmyHx6v6mh5P9SQZX0M2pee195N18ns4-PX9JOl-05BEuOzVSZC5B2CLkLOe89JwxrjLAkpgNc-4Rd6N4DYXWmrpZWZSC4dK8MakeREKn22QpVhGv0lo4LoQXtoi4y4X0kgoJqG-cr3csBBEf4t8A4TUrb1RaIuNz6tS3VYKiv9TJUXGZCq3yM4MQNVtyHsFAAiWQ7kHwwczwObDc_NmREoBUqpBSqVf_m36Hnk3Ph6qn6ejH9tkpY8EmIbbu0OW6mrqd8lb-1Df3Fdfmzh9AmHb6Iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+Numerical+Investigation+of+Hydrogen+Embrittlement+Effect+on+Microdamage+Evolution+of+Advanced+High-Strength+Dual-Phase+Steel&rft.jtitle=Metals+and+materials+international&rft.au=M.+Asadipoor&rft.au=J.+Kadkhodapour&rft.au=A.+Pourkamali+Anaraki&rft.au=S.+M.+H.+Sharifi&rft.date=2021-07-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1598-9623&rft.eissn=2005-4149&rft.spage=2276&rft.epage=2291&rft_id=info:doi/10.1007%2Fs12540-020-00681-1&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9836919
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon