Experimental and Numerical Investigation of Hydrogen Embrittlement Effect on Microdamage Evolution of Advanced High-Strength Dual-Phase Steel
The effect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical approaches. In the experimental section, the tensile test was performed under different testing conditions, i.e., vacuum, in-situ hydrogen plasma c...
Uložené v:
| Vydané v: | Metals and materials international Ročník 27; číslo 7; s. 2276 - 2291 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Seoul
The Korean Institute of Metals and Materials
01.07.2021
Springer Nature B.V 대한금속·재료학회 |
| Predmet: | |
| ISSN: | 1598-9623, 2005-4149 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The effect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical approaches. In the experimental section, the tensile test was performed under different testing conditions, i.e., vacuum, in-situ hydrogen plasma charging (IHPC), ex-situ electrochemical hydrogen charging (EEHC), and ex-situ + in-situ hydrogen charging (EIHC) conditions. The post-mortem analysis was conducted on the fracture surface of specimens to illuminate the impact of hydrogen on the microstructure and mechanical properties. The results showed that under all of hydrogen charging conditions, the yield stress and ultimate tensile strength were slightly sensitive to hydrogen, while tensile elongation was profoundly affected. While only ductile dimple features were observed on the fracture surfaces in vacuum condition, the results indicated a simultaneous action of the hydrogen-enhanced decohesion (HEDE) and hydrogen enhanced localized plasticity (HELP) mechanisms of HE, depending on the local concentration of hydrogen under the IHPC and EEHC conditions. At the EIHC condition, the HEDE model was the dominant failure mechanism, which was manifested by the HE-induced large crack. In the numerical approach, a finite-element analysis was developed to include the Gorson–Tvergaard–Needleman (GTN) damage model in Abaqus™ software. To numerically describe the damage mechanism, the GTN damage model was utilized in the 3D finite-element model. After calibration of damage parameters, the predicted damage mechanisms for two testing conditions, i.e., vacuum and EIHC, were compared with experimental results.
Graphic Abstract |
|---|---|
| AbstractList | The efect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical approaches. In the experimental section, the tensile test was performed under diferent testing conditions, i.e., vacuum, in-situ hydrogen plasma charging (IHPC), ex-situ electrochemical hydrogen charging(EEHC), and ex-situ+in-situ hydrogen charging (EIHC) conditions. The post-mortem analysis was conducted on the fracturesurface of specimens to illuminate the impact of hydrogen on the microstructure and mechanical properties. The resultsshowed that under all of hydrogen charging conditions, the yield stress and ultimate tensile strength were slightly sensitive tohydrogen, while tensile elongation was profoundly afected. While only ductile dimple features were observed on the fracturesurfaces in vacuum condition, the results indicated a simultaneous action of the hydrogen-enhanced decohesion (HEDE)and hydrogen enhanced localized plasticity (HELP) mechanisms of HE, depending on the local concentration of hydrogenunder the IHPC and EEHC conditions. At the EIHC condition, the HEDE model was the dominant failure mechanism,which was manifested by the HE-induced large crack. In the numerical approach, a fnite-element analysis was developed toinclude the Gorson–Tvergaard–Needleman (GTN) damage model in Abaqus™ software. To numerically describe the damagemechanism, the GTN damage model was utilized in the 3D fnite-element model. After calibration of damage parameters, thepredicted damage mechanisms for two testing conditions, i.e., vacuum and EIHC, were compared with experimental results. KCI Citation Count: 0 The effect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical approaches. In the experimental section, the tensile test was performed under different testing conditions, i.e., vacuum, in-situ hydrogen plasma charging (IHPC), ex-situ electrochemical hydrogen charging (EEHC), and ex-situ + in-situ hydrogen charging (EIHC) conditions. The post-mortem analysis was conducted on the fracture surface of specimens to illuminate the impact of hydrogen on the microstructure and mechanical properties. The results showed that under all of hydrogen charging conditions, the yield stress and ultimate tensile strength were slightly sensitive to hydrogen, while tensile elongation was profoundly affected. While only ductile dimple features were observed on the fracture surfaces in vacuum condition, the results indicated a simultaneous action of the hydrogen-enhanced decohesion (HEDE) and hydrogen enhanced localized plasticity (HELP) mechanisms of HE, depending on the local concentration of hydrogen under the IHPC and EEHC conditions. At the EIHC condition, the HEDE model was the dominant failure mechanism, which was manifested by the HE-induced large crack. In the numerical approach, a finite-element analysis was developed to include the Gorson–Tvergaard–Needleman (GTN) damage model in Abaqus™ software. To numerically describe the damage mechanism, the GTN damage model was utilized in the 3D finite-element model. After calibration of damage parameters, the predicted damage mechanisms for two testing conditions, i.e., vacuum and EIHC, were compared with experimental results.Graphic Abstract The effect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical approaches. In the experimental section, the tensile test was performed under different testing conditions, i.e., vacuum, in-situ hydrogen plasma charging (IHPC), ex-situ electrochemical hydrogen charging (EEHC), and ex-situ + in-situ hydrogen charging (EIHC) conditions. The post-mortem analysis was conducted on the fracture surface of specimens to illuminate the impact of hydrogen on the microstructure and mechanical properties. The results showed that under all of hydrogen charging conditions, the yield stress and ultimate tensile strength were slightly sensitive to hydrogen, while tensile elongation was profoundly affected. While only ductile dimple features were observed on the fracture surfaces in vacuum condition, the results indicated a simultaneous action of the hydrogen-enhanced decohesion (HEDE) and hydrogen enhanced localized plasticity (HELP) mechanisms of HE, depending on the local concentration of hydrogen under the IHPC and EEHC conditions. At the EIHC condition, the HEDE model was the dominant failure mechanism, which was manifested by the HE-induced large crack. In the numerical approach, a finite-element analysis was developed to include the Gorson–Tvergaard–Needleman (GTN) damage model in Abaqus™ software. To numerically describe the damage mechanism, the GTN damage model was utilized in the 3D finite-element model. After calibration of damage parameters, the predicted damage mechanisms for two testing conditions, i.e., vacuum and EIHC, were compared with experimental results. Graphic Abstract |
| Author | Sharifi, S. M. H. Barnoush, A. Pourkamali Anaraki, A. Kadkhodapour, J. Asadipoor, M. Darabi, A. Ch |
| Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0002-3055-7710 surname: Asadipoor fullname: Asadipoor, M. organization: Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Department of Mechanical Engineering, Shahid Rajaee Teacher Training University – sequence: 2 givenname: J. orcidid: 0000-0002-5106-2098 surname: Kadkhodapour fullname: Kadkhodapour, J. organization: Department of Mechanical Engineering, Shahid Rajaee Teacher Training University – sequence: 3 givenname: A. orcidid: 0000-0002-6735-5055 surname: Pourkamali Anaraki fullname: Pourkamali Anaraki, A. email: ali_pourkamali@sru.ac.ir organization: Department of Mechanical Engineering, Shahid Rajaee Teacher Training University – sequence: 4 givenname: S. M. H. surname: Sharifi fullname: Sharifi, S. M. H. organization: Department of Mechanical Engineering, Petroleum University of Technology – sequence: 5 givenname: A. Ch orcidid: 0000-0001-9460-7572 surname: Darabi fullname: Darabi, A. Ch organization: Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Materials Science and Strength of Materials, Institute for Materials Testing, University of Stuttgart – sequence: 6 givenname: A. orcidid: 0000-0002-5584-5516 surname: Barnoush fullname: Barnoush, A. organization: Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002735260$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNpFkc9u1DAQxi1UJLaFF-BkiRMHgx3bSXxclZRdqfwRLWfLccZZt1l7cZwVPATvjLcL4jD6NKPfjEbfd4kuQgyA0GtG3zFKm_czq6SghFalaN0ywp6hVUWpJIIJdYFWTKqWqLriL9DlPD8UiHFWrdDv7ucBkt9DyGbCJgz487IvA1u6bTjCnP1oso8BR4c3v4YURwi42_fJ5zzBaQ93zoHNuDCfvE1xMHszAu6OcVr-ba6HowkWBrzx447c5QRhzDv8YTET-bozM-C7DDC9RM-dmWZ49Vev0Peb7v56Q26_fNxer29JYIpl4pQA2zvpRE0HUH1T183AnZBtaxre2Io3ddtY0RplFCjeM0sZc9D3TEgngV-ht-e7ITn9aL2Oxj_pGPVj0utv91utWl4rpgr75sweUvyxFEP0Q1xSKO_p4nlbC0nlieJnaj4kH0ZI_ylG9Skjfc5Il4z0U0aa8T_Hy4fi |
| ContentType | Journal Article |
| Copyright | The Korean Institute of Metals and Materials 2020. corrected publication 2020 The Korean Institute of Metals and Materials 2020. corrected publication 2020. |
| Copyright_xml | – notice: The Korean Institute of Metals and Materials 2020. corrected publication 2020 – notice: The Korean Institute of Metals and Materials 2020. corrected publication 2020. |
| DBID | 7SR 8BQ 8FD JG9 ACYCR |
| DOI | 10.1007/s12540-020-00681-1 |
| DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Korean Citation Index |
| DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2005-4149 |
| EndPage | 2291 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_9836919 10_1007_s12540_020_00681_1 |
| GrantInformation_xml | – fundername: Research Council of Norway grantid: HyF-Lex (244068/E30) project. |
| GroupedDBID | -EM 06D 0R~ 0VY 123 1N0 2.D 203 29M 2JY 2KG 2VQ 30V 4.4 406 408 40D 5VS 67Z 8FE 8FG 96X 9ZL AAAVM AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BA0 BENPR BGLVJ CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZB HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KB. KOV KVFHK LLZTM MA- MZR N2Q NDZJH NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P P9N PDBOC PT4 PT5 Q2X R89 R9I RLLFE ROL RSV S1Z S26 S27 S28 S3B SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 ZMTXR ZZE ~A9 7SR 8BQ 8FD AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA JG9 AABYN AAFGU AAGCJ AAPBV AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU Z5O Z7S Z88 |
| ID | FETCH-LOGICAL-n191t-f94ecbf5f460de9b7667d3f4588a737c237687c48a9a9e93b1c011febb145f5e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522584600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1598-9623 |
| IngestDate | Tue Nov 21 21:42:25 EST 2023 Thu Sep 25 00:41:29 EDT 2025 Fri Feb 21 02:48:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Ex-situ electrochemical hydrogen charging Damage evolution GTN damage model In-situ hydrogen plasma charging Hydrogen embrittlement |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-n191t-f94ecbf5f460de9b7667d3f4588a737c237687c48a9a9e93b1c011febb145f5e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6735-5055 0000-0002-5106-2098 0000-0002-5584-5516 0000-0002-3055-7710 0000-0001-9460-7572 |
| PQID | 2548645059 |
| PQPubID | 326276 |
| PageCount | 16 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9836919 proquest_journals_2548645059 springer_journals_10_1007_s12540_020_00681_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Seoul |
| PublicationPlace_xml | – name: Seoul |
| PublicationTitle | Metals and materials international |
| PublicationTitleAbbrev | Met. Mater. Int |
| PublicationYear | 2021 |
| Publisher | The Korean Institute of Metals and Materials Springer Nature B.V 대한금속·재료학회 |
| Publisher_xml | – name: The Korean Institute of Metals and Materials – name: Springer Nature B.V – name: 대한금속·재료학회 |
| References | KoyamaMTasanCCAkiyamaETsuzakiKRaabeDHydrogen-assisted decohesion and localized plasticity in dual-phase steelActa Mater.2014701741871:CAS:528:DC%2BC2cXms1Ggsrc%3D LoidlMKolkOHydrogen Embrittlement in HSSs Limits Use in Lightweight Body in White Design-High strength steels (HSSs) can fail due to hydrogen embrittlement under certain circumstances, which hinders their use in the body in white designAdv. Mater. Process.20111693221:CAS:528:DC%2BC3MXksFGktbc%3D SunJJiangTSunYWangYLiuYA lamellar structured ultrafine grain ferrite-martensite dual-phase steel and its resistance to hydrogen embrittlementJ. Alloys Compd.20176983903991:CAS:528:DC%2BC28XitFKrtL3E DepoverTHajilouDWanDWangABarnoushKVAssessment of the potential of hydrogen plasma charging as compared to conventional electrochemical hydrogen charging on dual phase steelMater. Sci. Eng. A20197546136211:CAS:528:DC%2BC1MXms1Gltr8%3D D. Bhattacharya, Developments in advanced high strength steels, in Proceedings of Proceedings of the Joint International Conference of HSLA Steels, Sanya (2005), pp. 70–73 DepoverTVerbekenKThe detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-CX alloys: An experimental proof of the HELP mechanismInt. J. Hydrogen Energy2018435305030611:CAS:528:DC%2BC1cXjsVSnsA%3D%3D L. Duprez, K. Verbeken, M. Verhaege, Effect of hydrogen on the mechanical properties of multiphase high strength steels, in Effect of Hydrogen on Materials (2009), pp. 62–69 TvergaardVNeedlemanAAnalysis of the cup-cone fracture in a round tensile barActa Metall.1984321157169 VenezuelaJTapia-BastidasCZhouQDepoverTVerbekenKGrayEAtrensADetermination of the equivalent hydrogen fugacity during electrochemical charging of 3.5 NiCrMoV steelCorros. Sci.2018132901061:CAS:528:DC%2BC2sXitVektrfK DepoverTEscobarDPWallaertEZermoutZVerbekenKEffect of hydrogen charging on the mechanical properties of advanced high strength steelsInt. J. Hydrogen Energy2014399464746561:CAS:528:DC%2BC2cXhs1yls7w%3D AyatollahiMRDarabiACChamaniHRKadkhodapourJ3D micromechanical modeling of failure and damage evolution in dual phase steel based on a real 2D microstructureActa Mech. Solida Sin.201629195110 DaviesRGHydrogen embrittlement of dual-phase steelsMetall. Trans. A1981129166716721:CAS:528:DyaL3MXlvFSktb4%3D NagumoMFundamentals of hydrogen embrittlement2016SingaporeSpringer239 IchiiKKoyamaMTasanCCTsuzakiKComparative study of hydrogen embrittlement in stable and metastable high-entropy alloysScr. Mater.201815074771:CAS:528:DC%2BC1cXkt1Kmtr8%3D WanDDengYBarnoushAHydrogen embrittlement effect observed by IHPCon a ferritic alloyScr. Mater.201815124271:CAS:528:DC%2BC1cXmsF2msbc%3D LiuQVenezuelaJZhangMZhouQAtrensAHydrogen trapping in some advanced high strength steelsCorros. Sci.20161117707851:CAS:528:DC%2BC28XhtVOitLrM TakakuwaOYamabeJMatsunagaHFuruyaYMatsuokaSComprehensive understanding of ductility loss mechanisms in various steels with external and internal hydrogenMetall. Mater. Trans. A20174811571757321:CAS:528:DC%2BC2sXhsV2lsLzK LaureysADepoverTPetrovRVerbekenKMicrostructural characterization of hydrogen-induced cracking in TRIP-assisted steel by EBSDMater. Charact.20161121691791:CAS:528:DC%2BC2MXitV2mt77N DepoverTVerbekenKHydrogen trapping and hydrogen induced mechanical degradation in lab cast Fe–C–Cr alloysMater. Sci. Eng. A20166691341491:CAS:528:DC%2BC28XovVamtLc%3D DepoverTVercruysseFElmahdyAVerleysenPVerbekenKEvaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditionsInt. J. Impact Eng.2019123118125 DjukicMBBakicGMZeravcicVSSedmakARajicicBThe synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesionEng. Fract. Mech.2019216106528 BirnbaumHKSofronisPHydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fractureMater. Sci. Eng. A19941761–21912021:CAS:528:DyaK2cXjtVCmt7c%3D KoyamaMAkiyamaELeeYKRaabeDTsuzakiKOverview of hydrogen embrittlement in high-Mn steelsInt. J. Hydrogen Energy2017421712706127231:CAS:528:DC%2BC2sXksV2rtbY%3D M.O.H.S.E.N Dadfarnia, A.K.I.H.I.D.E. Nagao, B.P. Somerday, P.E. Schembri, J.W. Foulk III, K.A. Nibur, D.K. Balch, R.O. Ritchie, P. Sofronis, Modeling hydrogen-induced fracture and crack propagation in high strength steels, in Materials Performance in Hydrogen Environments, Proceedings of the 2016 International Hydrogen Conference, Jackson Lake Lodge, Moran, WY, USA (ASM International, Warrendale, PA 2017), pp. 572–80 SilversteinREliezerDTal-GutelmacherEHydrogen trapping in alloys studied by thermal desorption spectrometryJ. Alloys Compd.20187475115221:CAS:528:DC%2BC1cXktlyms7s%3D SunSGuJChenNThe influence of hydrogen on the sub-structure of the martensite and ferrite dual-phase steelScr. Metall.19892310173517371:CAS:528:DyaL1MXmtlOgs7w%3D SasakiDKoyamaMNoguchiHFactors affecting hydrogen-assisted cracking in a commercial tempered martensitic steel: Mn segregation, MnS, and the stress state around abnormal cracksMater. Sci. Eng. A201564072811:CAS:528:DC%2BC2MXhtVaitrzP SongJCurtinWAAtomic mechanism and prediction of hydrogen embrittlement in ironNat. Mater.20131221451511:CAS:528:DC%2BC38Xhs1CktL7P SoyarslanCGharbiMMTekkayaAEA combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic–martensitic steelInt. J. Solids Struct.20124913160816261:CAS:528:DC%2BC38Xls1Wku7k%3D SomerdayBPSofronisPNiburKASan MarchiCKirchheimRElucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrationsActa Mater.20136116615361701:CAS:528:DC%2BC3sXht1SjsbbL BarnoushAVehoffHIn situ electrochemical nanoindentation: A technique for local examination of hydrogen embrittlementCorros. Sci.20085012592671:CAS:528:DC%2BD1cXit1Gjsw%3D%3D YuHOlsenJSAlvaroAQiaoLHeJZhangZHydrogen informed Gurson model for hydrogen embrittlement simulationEng. Fract. Mech.2019217106542 NagumoMHydrogen related failure of steels–a new aspectMater. Sci. Technol.20042089409501:CAS:528:DC%2BD2cXos1ynt7w%3D GursonALContinuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile mediaJ. Eng. Mater. Technol.1977991215 KataniSZiaei-RadSNouriNSaeidiNKadkhodapourJTorabianNSchmauderSMicrostructure modelling of dual-phase steel using SEM micrographs and Voronoi polycrystal modelsMetallogr. Microstruct. Anal.2013231561691:CAS:528:DC%2BC3sXpvV2mt70%3D I. Tsoupis, M. Merklein, A new way for the adaption of inverse identified GTN-parameters to bending processes, in 13th International LS-DYNA Users Conference (2014), (pp. 1–14) DmytrakhIMSyrotyukAMLeshchakRLSpecific features of the deformation and fracture of low-alloy steels in hydrogen-containing media: influence of hydrogen concentration in the metalMater. Sci.20185432953081:CAS:528:DC%2BC1cXisFaqsr7M RonevichJASpeerJGMatlockDKHydrogen embrittlement of commercially produced advanced high strength sheet steelsSAE Int. J. Mater. Manuf.201031255267 BN Popov, JW Lee, MB Djukic, Hydrogen permeation and hydrogen-induced cracking, in Handbook of Environmental Degradation of Materials (William Andrew Publishing, 2018), pp. 133–162. AtrensALiuQTapia-BastidasCGrayEIrwantoBVenezuelaJLiuQInfluence of hydrogen on steel components for clean energyCorros. Mater. Degrad.201811326 HuYDongCLuoHXiaoKZhongPLiXStudy on the hydrogen embrittlement of Aermet100 using hydrogen permeation and SSRT techniquesMetall. Mater. Trans. A2017489404640571:CAS:528:DC%2BC2sXpt1altLo%3D LaureysAVan den EeckhoutEPetrovRVerbekenKEffect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen chargingActa Mater.20171271922021:CAS:528:DC%2BC2sXhslSlu7o%3D McMahonCJJrHydrogen-induced intergranular fracture of steelsEng. Fract. Mech.2001686773788 LaureysADepoverTPetrovRVerbekenKCharacterization of hydrogen-induced cracking in TRIP-assisted steelsInt. J. Hydrogen Energy2015404716901169121:CAS:528:DC%2BC2MXhtVOku7zF KumamotoTKoyamaMTsuzakiKStrain rate sensitivity of microstructural damage evolution in a dual-phase steel pre-charged with hydrogenProcedia Struct. Integr.201813710715 HachetGMetsueAOudrissAFeaugasXInfluence of hydrogen on the elastic properties of nickel single crystal: A numerical and experimental investigationActa Mater.20181482802881:CAS:528:DC%2BC1cXivVans7o%3D KumarBSKainVSinghMVishwanadhBInfluence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steelMater. Sci. Eng. A20177001401511:CAS:528:DC%2BC2sXpvFCgsr0%3D AbbasiMKetabchiMIzadkhahHFatmehsariaDHAghbashANIdentification of GTN model parameters by application of response surface methodologyProcedia Eng.201110415420 FalkenbergRBrocksWDietzelWScheiderIModelling the effect of hydrogen on ductile tearing resistance of steels: dedicated to Professor Dr. Hermann Riedel on the occasion of his 65th birthdayInt. J. Mater. Res.201010189899961:CAS:528:DC%2BC3cXht1Gju7nF KirchheimRRevisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocationsScr. Mater.201062267701:CAS:528:DC%2BD1MXhsFKlt73E https://www.ssab.com/products/brands/docol/products/docol-1200M. Accessed 15 July 2019 DadfarniaMNagaoAWangSMartinMLSomerdayBPSofronisPRecent advances on hydrogen embrittlement of structural materialsInt. J. Fract.20151961–22232431:CAS:528:DC%2BC2MXitV2nu73I GangloffRPSomerdayBPGaseous hydrogen embrittlement of materials in energy technologies: the problem, its characterization and effects on particular alloy classes2012AmsterdamElsevier MartinMLRobertsonIMSofronisPInterpreting hydrogen-induced fracture surfaces in terms of deformation processes: a new approachActa Mater.2011599368036871:CAS:528:DC%2BC3MXkslCjsLg%3D UthaisangsukVPrahlUBleckWMicromechanical modelling of damage behaviour of multiphase steelsComput. Mater. Sci.200843127351:CAS:528:DC%2BD1cXntFSjt7c%3D DjukicMBZeravcicVSBakicGMSedmakARajicicBHydrogen damage of steels: a case study and hydrogen embrittlement modelEng. Fail. |
| References_xml | – reference: SunSGuJChenNThe influence of hydrogen on the sub-structure of the martensite and ferrite dual-phase steelScr. Metall.19892310173517371:CAS:528:DyaL1MXmtlOgs7w%3D – reference: SasakiDKoyamaMNoguchiHFactors affecting hydrogen-assisted cracking in a commercial tempered martensitic steel: Mn segregation, MnS, and the stress state around abnormal cracksMater. Sci. Eng. A201564072811:CAS:528:DC%2BC2MXhtVaitrzP – reference: DepoverTEscobarDPWallaertEZermoutZVerbekenKEffect of hydrogen charging on the mechanical properties of advanced high strength steelsInt. J. Hydrogen Energy2014399464746561:CAS:528:DC%2BC2cXhs1yls7w%3D – reference: TvergaardVOn localization in ductile materials containing spherical voidsInt. J. Fract.1982184237252 – reference: SomerdayBPSofronisPNiburKASan MarchiCKirchheimRElucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrationsActa Mater.20136116615361701:CAS:528:DC%2BC3sXht1SjsbbL – reference: LaureysADepoverTPetrovRVerbekenKCharacterization of hydrogen-induced cracking in TRIP-assisted steelsInt. J. Hydrogen Energy2015404716901169121:CAS:528:DC%2BC2MXhtVOku7zF – reference: KhoramishadHAkbardoostJAyatollahiMRSize effects on parameters of cohesive zone model in mode I fracture of limestoneInt. J. Damage Mech2014234588605 – reference: DmytrakhIMSyrotyukAMLeshchakRLSpecific features of the deformation and fracture of low-alloy steels in hydrogen-containing media: influence of hydrogen concentration in the metalMater. Sci.20185432953081:CAS:528:DC%2BC1cXisFaqsr7M – reference: JiangDECarterEAFirst principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metalsActa Mater.20045216480148071:CAS:528:DC%2BD2cXmvVGitro%3D – reference: MorrisseyLSHandriganSMNakhlaSQuantifying void formation and changes to microstructure during hydrogen charging: a precursor to embrittlement and blisteringMetall. Mater. Trans. A2019503146014671:CAS:528:DC%2BC1cXisFejsrjI – reference: EscobarDPVerbekenKDuprezLVerhaegeMEvaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopyMater. Sci. Eng. A20125515058 – reference: YamabeJYoshikawaMMatsunagaHMatsuokaSHydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environmentInt. J. Fatigue20171022022131:CAS:528:DC%2BC2sXntFensbw%3D – reference: BarnoushAVehoffHRecent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleationActa Mater.20105816527452851:CAS:528:DC%2BC3cXpsV2rsLw%3D – reference: KoyamaMAkiyamaELeeYKRaabeDTsuzakiKOverview of hydrogen embrittlement in high-Mn steelsInt. J. Hydrogen Energy2017421712706127231:CAS:528:DC%2BC2sXksV2rtbY%3D – reference: JemblieLOldenVAkselsenOMA review of cohesive zone modelling as an approach for numerically assessing hydrogen embrittlement of steel structuresPhilos. Trans. R. Soc. A Math. Phys. Eng. Sci.2017375209820160411 – reference: NagumoMFundamentals of hydrogen embrittlement2016SingaporeSpringer239 – reference: HachetGMetsueAOudrissAFeaugasXInfluence of hydrogen on the elastic properties of nickel single crystal: A numerical and experimental investigationActa Mater.20181482802881:CAS:528:DC%2BC1cXivVans7o%3D – reference: DjukicMBBakicGMZeravcicVSSedmakARajicicBHydrogen embrittlement of industrial components: prediction, prevention, and modelsCorrosion20167279439611:CAS:528:DC%2BC28XhvVyktbnN – reference: RyuJHChunYSLeeCSBhadeshiaHKDHSuhDWEffect of deformation on hydrogen trapping and effusion in TRIP-assisted steelActa Mater.20126010408540921:CAS:528:DC%2BC38XnslSjs7w%3D – reference: BirnbaumHKSofronisPHydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fractureMater. Sci. Eng. A19941761–21912021:CAS:528:DyaK2cXjtVCmt7c%3D – reference: GangloffRPSomerdayBPGaseous hydrogen embrittlement of materials in energy technologies: the problem, its characterization and effects on particular alloy classes2012AmsterdamElsevier – reference: NagumoMHydrogen related failure of steels–a new aspectMater. Sci. Technol.20042089409501:CAS:528:DC%2BD2cXos1ynt7w%3D – reference: OgawaYBirenisDMatsunagaHThøgersenAPrytzØTakakuwaOYamabeJMulti-scale observation of hydrogen-induced, localized plastic deformation in fatigue-crack propagation in a pure ironScr. Mater.201714013171:CAS:528:DC%2BC2sXhtFamtrbM – reference: M.O.H.S.E.N Dadfarnia, A.K.I.H.I.D.E. Nagao, B.P. Somerday, P.E. Schembri, J.W. Foulk III, K.A. Nibur, D.K. Balch, R.O. Ritchie, P. Sofronis, Modeling hydrogen-induced fracture and crack propagation in high strength steels, in Materials Performance in Hydrogen Environments, Proceedings of the 2016 International Hydrogen Conference, Jackson Lake Lodge, Moran, WY, USA (ASM International, Warrendale, PA 2017), pp. 572–80 – reference: HuYDongCLuoHXiaoKZhongPLiXStudy on the hydrogen embrittlement of Aermet100 using hydrogen permeation and SSRT techniquesMetall. Mater. Trans. A2017489404640571:CAS:528:DC%2BC2sXpt1altLo%3D – reference: MartinMLDadfarniaMNagaoAWangSSofronisPEnumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materialsActa Mater.20191657347501:CAS:528:DC%2BC1cXisFKhtLjO – reference: KumarBSKainVSinghMVishwanadhBInfluence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steelMater. Sci. Eng. A20177001401511:CAS:528:DC%2BC2sXpvFCgsr0%3D – reference: DepoverTVercruysseFElmahdyAVerleysenPVerbekenKEvaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditionsInt. J. Impact Eng.2019123118125 – reference: RonevichJASomerdayBPSan MarchiCWEffects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steelsInt. J. Fatigue2016824975041:CAS:528:DC%2BC2MXhsV2lt7vM – reference: SunJJiangTSunYWangYLiuYA lamellar structured ultrafine grain ferrite-martensite dual-phase steel and its resistance to hydrogen embrittlementJ. Alloys Compd.20176983903991:CAS:528:DC%2BC28XitFKrtL3E – reference: WanDDengYBarnoushAHydrogen embrittlement effect observed by IHPCon a ferritic alloyScr. Mater.201815124271:CAS:528:DC%2BC1cXmsF2msbc%3D – reference: McMahonCJJrHydrogen-induced intergranular fracture of steelsEng. Fract. Mech.2001686773788 – reference: DepoverTHajilouDWanDWangABarnoushKVAssessment of the potential of hydrogen plasma charging as compared to conventional electrochemical hydrogen charging on dual phase steelMater. Sci. Eng. A20197546136211:CAS:528:DC%2BC1MXms1Gltr8%3D – reference: DadfarniaMNagaoAWangSMartinMLSomerdayBPSofronisPRecent advances on hydrogen embrittlement of structural materialsInt. J. Fract.20151961–22232431:CAS:528:DC%2BC2MXitV2nu73I – reference: VajraguptaNUthaisangsukVSchmalingBMünstermannSHartmaierABleckWA micromechanical damage simulation of dual phase steels using XFEMComput. Mater. Sci.2012542712791:CAS:528:DC%2BC38XhtVOjs74%3D – reference: D. Bhattacharya, Developments in advanced high strength steels, in Proceedings of Proceedings of the Joint International Conference of HSLA Steels, Sanya (2005), pp. 70–73 – reference: DjukicMBZeravcicVSBakicGMSedmakARajicicBHydrogen damage of steels: a case study and hydrogen embrittlement modelEng. Fail. Anal.2015584854981:CAS:528:DC%2BC2MXhtVKnurvJ – reference: BN Popov, JW Lee, MB Djukic, Hydrogen permeation and hydrogen-induced cracking, in Handbook of Environmental Degradation of Materials (William Andrew Publishing, 2018), pp. 133–162. – reference: KumamotoTKoyamaMTsuzakiKStrain rate sensitivity of microstructural damage evolution in a dual-phase steel pre-charged with hydrogenProcedia Struct. Integr.201813710715 – reference: GursonALContinuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile mediaJ. Eng. Mater. Technol.1977991215 – reference: LynchSPHydrogen embrittlement (HE) phenomena and mechanismsStress corrosion cracking2011SawstonWoodhead Publishing90130 – reference: https://www.ssab.com/products/brands/docol/products/docol-1200M. Accessed 15 July 2019 – reference: DepoverTVerbekenKThe detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-CX alloys: An experimental proof of the HELP mechanismInt. J. Hydrogen Energy2018435305030611:CAS:528:DC%2BC1cXjsVSnsA%3D%3D – reference: EscobarDPDepoverTDuprezLVerbekenKVerhaegeMCombined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy, and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steelActa Mater.2012606–725932605 – reference: NagaoADadfarniaMSomerdayBPSofronisPRitchieROHydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steelsJ. Mech. Phys. Solids20181124034301:CAS:528:DC%2BC1cXhtVKmsbk%3D – reference: BilottaGHenaffGHalmDArzaghiMExperimental measurement of out-of-plane displacement in crack propagation under gaseous hydrogenInt. J. Hydrogen Energy2017421510568105781:CAS:528:DC%2BC2sXjsFGqtrc%3D – reference: TakakuwaOYamabeJMatsunagaHFuruyaYMatsuokaSComprehensive understanding of ductility loss mechanisms in various steels with external and internal hydrogenMetall. Mater. Trans. A20174811571757321:CAS:528:DC%2BC2sXhsV2lsLzK – reference: I. Tsoupis, M. Merklein, A new way for the adaption of inverse identified GTN-parameters to bending processes, in 13th International LS-DYNA Users Conference (2014), (pp. 1–14) – reference: IchiiKKoyamaMTasanCCTsuzakiKComparative study of hydrogen embrittlement in stable and metastable high-entropy alloysScr. Mater.201815074771:CAS:528:DC%2BC1cXkt1Kmtr8%3D – reference: FaleskogJGaoXShihCFCell model for nonlinear fracture analysis—I. Micromechanics calibrationInt. J. Fract.1998894355373 – reference: RonevichJASpeerJGMatlockDKHydrogen embrittlement of commercially produced advanced high strength sheet steelsSAE Int. J. Mater. Manuf.201031255267 – reference: YuHOlsenJSAlvaroAQiaoLHeJZhangZHydrogen informed Gurson model for hydrogen embrittlement simulationEng. Fract. Mech.2019217106542 – reference: SilversteinREliezerDTal-GutelmacherEHydrogen trapping in alloys studied by thermal desorption spectrometryJ. Alloys Compd.20187475115221:CAS:528:DC%2BC1cXktlyms7s%3D – reference: LoidlMKolkOHydrogen Embrittlement in HSSs Limits Use in Lightweight Body in White Design-High strength steels (HSSs) can fail due to hydrogen embrittlement under certain circumstances, which hinders their use in the body in white designAdv. Mater. Process.20111693221:CAS:528:DC%2BC3MXksFGktbc%3D – reference: RehrlJMraczekKPichlerAWernerEMechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high-and low strain rate testsMater. Sci. Eng. A20145903603671:CAS:528:DC%2BC3sXhvFWqtbfI – reference: NovakPYuanRSomerdayBPSofronisPRitchieROA statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steelJ. Mech. Phys. Solids20105822062261:CAS:528:DC%2BC3cXksVentQ%3D%3D – reference: DjukicMBBakicGMZeravcicVSSedmakARajicicBThe synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesionEng. Fract. Mech.2019216106528 – reference: FalkenbergRBrocksWDietzelWScheiderIModelling the effect of hydrogen on ductile tearing resistance of steels: dedicated to Professor Dr. Hermann Riedel on the occasion of his 65th birthdayInt. J. Mater. Res.201010189899961:CAS:528:DC%2BC3cXht1Gju7nF – reference: FanYHZhangBYiHLHaoGSSunYYWangJQHanE-HKeWThe role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steelActa Mater.20171391881951:CAS:528:DC%2BC2sXhtlegtrfF – reference: AbbasiMKetabchiMIzadkhahHFatmehsariaDHAghbashANIdentification of GTN model parameters by application of response surface methodologyProcedia Eng.201110415420 – reference: LiXZhangJAkiyamaEWangYLiQMicrostructural and crystallographic study of hydrogen-assisted cracking in high strength PSB1080 steelInt. J. Hydrogen Energy2018433717898179111:CAS:528:DC%2BC1cXhsVylt7vJ – reference: SongJCurtinWAAtomic mechanism and prediction of hydrogen embrittlement in ironNat. Mater.20131221451511:CAS:528:DC%2BC38Xhs1CktL7P – reference: YuHOlsenJSHeJZhangZHydrogen-microvoid interactions at continuum scaleInt. J. Hydrogen Energy2018432110104101281:CAS:528:DC%2BC1cXosVCltrg%3D – reference: SoyarslanCGharbiMMTekkayaAEA combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic–martensitic steelInt. J. Solids Struct.20124913160816261:CAS:528:DC%2BC38Xls1Wku7k%3D – reference: KirchheimRRevisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocationsScr. Mater.201062267701:CAS:528:DC%2BD1MXhsFKlt73E – reference: DepoverTVerbekenKHydrogen trapping and hydrogen induced mechanical degradation in lab cast Fe–C–Cr alloysMater. Sci. Eng. A20166691341491:CAS:528:DC%2BC28XovVamtLc%3D – reference: UthaisangsukVPrahlUBleckWMicromechanical modelling of damage behaviour of multiphase steelsComput. Mater. Sci.200843127351:CAS:528:DC%2BD1cXntFSjt7c%3D – reference: KoyamaMTasanCCAkiyamaETsuzakiKRaabeDHydrogen-assisted decohesion and localized plasticity in dual-phase steelActa Mater.2014701741871:CAS:528:DC%2BC2cXms1Ggsrc%3D – reference: TvergaardVNeedlemanAAnalysis of the cup-cone fracture in a round tensile barActa Metall.1984321157169 – reference: DepoverTWallaertEVerbekenKFractographic analysis of the role of hydrogen diffusion on the hydrogen embrittlement susceptibility of DP steelMater. Sci. Eng. A20166492012081:CAS:528:DC%2BC2MXhs1ehu73J – reference: BarnoushAVehoffHIn situ electrochemical nanoindentation: A technique for local examination of hydrogen embrittlementCorros. Sci.20085012592671:CAS:528:DC%2BD1cXit1Gjsw%3D%3D – reference: Avramovic-CingaraGSalehCAJainMKWilkinsonDSVoid nucleation and growth in dual-phase steel 600 during uniaxial tensile testingMetall. Mater. Trans. A200940133117 – reference: MaireEGrabonSAdrienJLorenzinoPAsanumaYTakakuwaOMatsunagaHRole of hydrogen-charging on nucleation and growth of ductile damage in austenitic stainless steelsMaterials201912914261:CAS:528:DC%2BB3cXnsVWqsA%3D%3D – reference: BC De Cooman, L Chen, HS Kim, Y Estrin, SK Kim, H Voswinckel, State-of-the-science of high manganese TWIP steels for automotive applications, in Microstructure and Texture in Steels (2009), pp. 165–183 – reference: LiuQVenezuelaJZhangMZhouQAtrensAHydrogen trapping in some advanced high strength steelsCorros. Sci.20161117707851:CAS:528:DC%2BC28XhtVOitLrM – reference: DaviesRGHydrogen embrittlement of dual-phase steelsMetall. Trans. A1981129166716721:CAS:528:DyaL3MXlvFSktb4%3D – reference: VenezuelaJTapia-BastidasCZhouQDepoverTVerbekenKGrayEAtrensADetermination of the equivalent hydrogen fugacity during electrochemical charging of 3.5 NiCrMoV steelCorros. Sci.2018132901061:CAS:528:DC%2BC2sXitVektrfK – reference: L. Duprez, K. Verbeken, M. Verhaege, Effect of hydrogen on the mechanical properties of multiphase high strength steels, in Effect of Hydrogen on Materials (2009), pp. 62–69 – reference: LaureysAVan den EeckhoutEPetrovRVerbekenKEffect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen chargingActa Mater.20171271922021:CAS:528:DC%2BC2sXhslSlu7o%3D – reference: AsadipoorMAnarakiAPKadkhodapourJSharifiSMHBarnoushAMacro-and microscale investigations of hydrogen embrittlement in X70 pipeline steel by in-situ and ex-situ hydrogen charging tensile tests and in-situ electrochemical micro-cantilever bending testMater. Sci. Eng. A20207721387621:CAS:528:DC%2BC1MXit12rsLbE – reference: AtrensALiuQTapia-BastidasCGrayEIrwantoBVenezuelaJLiuQInfluence of hydrogen on steel components for clean energyCorros. Mater. Degrad.201811326 – reference: KataniSZiaei-RadSNouriNSaeidiNKadkhodapourJTorabianNSchmauderSMicrostructure modelling of dual-phase steel using SEM micrographs and Voronoi polycrystal modelsMetallogr. Microstruct. Anal.2013231561691:CAS:528:DC%2BC3sXpvV2mt70%3D – reference: LaureysADepoverTPetrovRVerbekenKMicrostructural characterization of hydrogen-induced cracking in TRIP-assisted steel by EBSDMater. Charact.20161121691791:CAS:528:DC%2BC2MXitV2mt77N – reference: MartinMLRobertsonIMSofronisPInterpreting hydrogen-induced fracture surfaces in terms of deformation processes: a new approachActa Mater.2011599368036871:CAS:528:DC%2BC3MXkslCjsLg%3D – reference: PeralLBZafraABelzunceJRodríguezCEffects of hydrogen on the fracture toughness of CrMo and CrMoV steels quenched and tempered at different temperaturesInt. J. Hydrogen Energy2019447395339651:CAS:528:DC%2BC1MXnvFOl – reference: NeedlemanATvergaardVAn analysis of ductile rupture modes at a crack tipJ. Mech. Phys. Solids1987352151183 – reference: RahimidehgolanFMajzoobiGAlinejadFFathi SolaJDetermination of the constants of GTN damage model using experiment, polynomial regression and kriging methodsAppl. Sci.20177111179 – reference: AyatollahiMRDarabiACChamaniHRKadkhodapourJ3D micromechanical modeling of failure and damage evolution in dual phase steel based on a real 2D microstructureActa Mech. Solida Sin.201629195110 |
| SSID | ssj0061312 |
| Score | 2.4162316 |
| Snippet | The effect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical... The efect of hydrogen on the microdamage evolution of 1200M advanced high-strength steel was evaluated by the combination of experimental and numerical... |
| SourceID | nrf proquest springer |
| SourceType | Open Website Aggregation Database Publisher |
| StartPage | 2276 |
| SubjectTerms | Characterization and Evaluation of Materials Chemistry and Materials Science Damage assessment Dimpling Dual phase steels Ductile fracture Elongation Engineering Thermodynamics Evolution Failure mechanisms Finite element method Fracture surfaces Heat and Mass Transfer High strength steels Hydrogen Hydrogen charging Hydrogen embrittlement Hydrogen plasma Machines Magnetic Materials Magnetism Manufacturing Materials Science Mathematical models Mechanical properties Metallic Materials Processes Solid Mechanics Tensile tests Three dimensional models Ultimate tensile strength Yield stress 재료공학 |
| Title | Experimental and Numerical Investigation of Hydrogen Embrittlement Effect on Microdamage Evolution of Advanced High-Strength Dual-Phase Steel |
| URI | https://link.springer.com/article/10.1007/s12540-020-00681-1 https://www.proquest.com/docview/2548645059 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002735260 |
| Volume | 27 |
| WOSCitedRecordID | wos000522584600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Metals and Materials International, 2021, 27(7), , pp.2276-2291 |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 2005-4149 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061312 issn: 1598-9623 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEG1EPejBXdxpxKOBySTp5Sg6ogcHccNb06uKYwKZjOBH-M9WZRJmFC96yqEXAq-6qpp6r5qQI2YMy5zACiNHSU6cRFJoHllrTZCZ6zim68cmeL8vHh_ldSMKG7Zs97YkWXvqiditi0V8vO6griGO4M4zB-FO4IMNN7cPrf-F-DSucWYSjjJE90Yq8_seEFLyMnxLL39UROtAc778v19cIUtNYklPxpawSmZ8vkYWp9oNrpPP3lQ7f6pzR_ujccFmQKf6bRQ5LQK9-HBlAdZFeyjqwk7HuI6Oux1TmHOFVD6n38Ah0d57Y8G48qShFVDkkERY9s6fqmd6NtKD6PoZoia9rbwfbJD7897d6UXUPMcQ5XCpq6IgUw8AZiFlHeel4YxxlwSUumqecIv8GsFtKrTU0svExBacR_DGxGkWMp9sktm8yP0WoYHrTHhps4S7VEgjIWmEPMp1UsNCEN1tcgioqFf7orD9NX6fCvVaKkjyL5UUCZOx3CZ7LWiqOXhDBQAIlkJaB8PHLUiT4UmTZkRKAVKqRkrFO3-bvksWushuqYm7e2S2Kkd-n8zb9-plWB7UBvkF9HjcxA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4higQ9UEqpGqCwQhyxFMf2Po6IBgUBESoPcVvtE1BSW3IcJH4E_7kzjq0ExKU9-bAPWfpmZ2Y1831LyCEzhmVOYIWRIyUnTiIpNI-stSbIzHUd0_VjE3w4FPf38qohhU3abve2JFl76jnZrYdFfLzuIK8hjuDO8ymFiIWK-b-v71r_C_FpVuPMJBxliO4NVebjPSCk5GV4k16-q4jWgeb0y__94gZZbxJLejyzhK9kyeeb5POC3OA38tpfkPOnOnd0OJ0VbMZ0QW-jyGkR6ODFlQVYF-0jqQuVjnEdnakdU5hzia18Tv8Bh0T7z40F48rjpq2AYg9JhGXv_KF6pL-mehxdPULUpNeV9-MtcnvavzkZRM1zDFEOl7oqCjL1AGAWUtZ1XhrOGHdJQKqr5gm32F8juE2Fllp6mZjYgvMI3pg4zULmk-9kOS9y_4PQwHUmvLRZwl0qpJGQNEIe5bqpYSGIXoccACpqZJ8Uyl_j96FQo1JBkn-mpEiYjGWH7LagqebgTRQAIFgKaR0MH7UgzYfnIs2IlAKkVI2Uirf_bfo-WR3cXF6oi7Ph-Q5Z62GnS93Eu0uWq3Lqf5IV-1w9Tcq92jj_AlbA36g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS9xAFB2KlqIP_VLRqnUoPhrcbJL5eJS6i9K6LNiKb8N8qrhOSswK_RH-Z-9NsuwqvpQ-5WFmQuDcmXuHe84JIfvMGFY4gR1GjpKcNEuk0Dyx1pogC9dzTDc_m-Cjkbi8lOMFFX_Ddp-1JFtNA7o0xfrwjwuHc-FbHxv6ePVBjUOawP1nOUciPd7Xzy9mZzHkqrbfWUjY1pDpO9nM6--A9BKr8KzUfNEdbZLO8MP_f-5H8r4rOOlRGyGfyBsfP5PVBRvCNfI4WLD5pzo6Opq2jZwJXfDhKCMtAz3566oSoo4OUOyFDsi4jrYuyBTmnCHFz-k7OKjo4KGLbFx51NENKHJLEmyHx6v6mh5P9SQZX0M2pee195N18ns4-PX9JOl-05BEuOzVSZC5B2CLkLOe89JwxrjLAkpgNc-4Rd6N4DYXWmrpZWZSC4dK8MakeREKn22QpVhGv0lo4LoQXtoi4y4X0kgoJqG-cr3csBBEf4t8A4TUrb1RaIuNz6tS3VYKiv9TJUXGZCq3yM4MQNVtyHsFAAiWQ7kHwwczwObDc_NmREoBUqpBSqVf_m36Hnk3Ph6qn6ejH9tkpY8EmIbbu0OW6mrqd8lb-1Df3Fdfmzh9AmHb6Iw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+Numerical+Investigation+of+Hydrogen+Embrittlement+Effect+on+Microdamage+Evolution+of+Advanced+High-Strength+Dual-Phase+Steel&rft.jtitle=Metals+and+materials+international&rft.au=M.+Asadipoor&rft.au=J.+Kadkhodapour&rft.au=A.+Pourkamali+Anaraki&rft.au=S.+M.+H.+Sharifi&rft.date=2021-07-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1598-9623&rft.eissn=2005-4149&rft.spage=2276&rft.epage=2291&rft_id=info:doi/10.1007%2Fs12540-020-00681-1&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9836919 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon |