Inverse boundary value problems for time-harmonic waves: Conditional stability and iterative reconstruction

Many inverse problems arising in different disciplines including exploration geophysics, medical imaging and nondestructive evaluation can be formulated as a nonlinear operator equation, F(x) = y, where F models the corresponding forward problem. Usually, the inverse problem is an ill-posed problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Qiu, Lingyun
Format: Dissertation
Sprache:Englisch
Veröffentlicht: ProQuest Dissertations & Theses 01.01.2013
Schlagworte:
ISBN:9781303610868, 1303610868
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Many inverse problems arising in different disciplines including exploration geophysics, medical imaging and nondestructive evaluation can be formulated as a nonlinear operator equation, F(x) = y, where F models the corresponding forward problem. Usually, the inverse problem is an ill-posed problem in the sense that a small perturbation in the data can lead to a significant impact in the reconstruction. In the first part of this dissertation, we focus on the analysis of iterative methods in Banach spaces. We assume certain conditional Hölder or Lipschitz type stability of the inverse problem and prove a linear or sublinear convergence rate for the Landweber iteration and a projected steepest descent iteration. This is a novel view point for the convergence analysis of the iterative methods. The second part of this dissertation is concerned with the conditional Lipschitz stability estimate for the inverse boundary value problem for time-harmonic waves. Assuming that the wavespeed (density) is piece-wise constant with discontinuities on a finite number of known interfaces, we provide a Lipschitz stability estimate for the inverse problems of acoustic (elastic) waves. In the third part, we study the inverse boundary value problem for the acoustic time-harmonic waves. It is to determine the property of the medium inside a domain from the measurements of the displacement and normal stress on its boundary. The governing equation is the Helmholtz equation. A hierarchy algorithm is proposed and analysed for the iterative reconstruction with multi-frequency data. The algorithm is based on a projected steepest descent iteration with stability constraints.
AbstractList Many inverse problems arising in different disciplines including exploration geophysics, medical imaging and nondestructive evaluation can be formulated as a nonlinear operator equation, F(x) = y, where F models the corresponding forward problem. Usually, the inverse problem is an ill-posed problem in the sense that a small perturbation in the data can lead to a significant impact in the reconstruction. In the first part of this dissertation, we focus on the analysis of iterative methods in Banach spaces. We assume certain conditional Hölder or Lipschitz type stability of the inverse problem and prove a linear or sublinear convergence rate for the Landweber iteration and a projected steepest descent iteration. This is a novel view point for the convergence analysis of the iterative methods. The second part of this dissertation is concerned with the conditional Lipschitz stability estimate for the inverse boundary value problem for time-harmonic waves. Assuming that the wavespeed (density) is piece-wise constant with discontinuities on a finite number of known interfaces, we provide a Lipschitz stability estimate for the inverse problems of acoustic (elastic) waves. In the third part, we study the inverse boundary value problem for the acoustic time-harmonic waves. It is to determine the property of the medium inside a domain from the measurements of the displacement and normal stress on its boundary. The governing equation is the Helmholtz equation. A hierarchy algorithm is proposed and analysed for the iterative reconstruction with multi-frequency data. The algorithm is based on a projected steepest descent iteration with stability constraints.
Author Qiu, Lingyun
Author_xml – sequence: 1
  givenname: Lingyun
  surname: Qiu
  fullname: Qiu, Lingyun
BookMark eNotj0tLAzEYRQMqqLX_IeB6II_Jy50UH4WCm-5LMvmCsdNEk8xI_70jurp3cbice4suU05wgdZGacoJl5Roqa_RutboCCGGc9KzG3TcphlKBezylLwtZzzbcQL8WbIb4VRxyAW3eILu3ZZTTnHA33aG-oA3OfnYYk52xLVZF8fYztgmj2ODYlucARcYcqqtTMMveIeugh0rrP9zhfbPT_vNa7d7e9luHnfdUTHdKQ2UeS25kYMER52RxOuBLcUFYUAMQfWeGSFtEBRCMFQx78FxFkQfAl-h-7_Z5cPXBLUdPvJUFs16oL1SggvTG_4DwVNZcg
ContentType Dissertation
Copyright Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Copyright_xml – notice: Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
DBID 053
0BH
CBPLH
EU9
G20
M8-
OK5
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
DatabaseName Dissertations & Theses Europe Full Text: Science & Technology
ProQuest Dissertations and Theses Professional
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest Dissertations & Theses A&I
ProQuest Dissertations & Theses Global
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
Dissertations & Theses @ Big Ten Academic Alliance
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle Dissertations & Theses Europe Full Text: Science & Technology
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest One Academic Eastern Edition
Dissertations & Theses @ CIC Institutions
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest Dissertations and Theses Professional
ProQuest One Academic
ProQuest Dissertations & Theses A&I
ProQuest One Academic (New)
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
ProQuest Dissertations & Theses Global
DatabaseTitleList Dissertations & Theses Europe Full Text: Science & Technology
Database_xml – sequence: 1
  dbid: G20
  name: ProQuest Dissertations & Theses Global
  url: https://www.proquest.com/pqdtglobal1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 3182166591
Genre Dissertation/Thesis
GroupedDBID 053
0BH
8R4
8R5
CBPLH
EU9
G20
M8-
OK5
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q2X
ID FETCH-LOGICAL-k728-78e12d86396c6eb1b960d8c21b9bf59e5cf74d2956af51eff9172ddeb32f54ff3
IEDL.DBID G20
ISBN 9781303610868
1303610868
IngestDate Mon Jun 30 17:52:01 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-k728-78e12d86396c6eb1b960d8c21b9bf59e5cf74d2956af51eff9172ddeb32f54ff3
Notes SourceType-Dissertations & Theses-1
ObjectType-Dissertation/Thesis-1
content type line 12
PQID 1477535949
PQPubID 18750
ParticipantIDs proquest_journals_1477535949
PublicationCentury 2000
PublicationDate 20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 20130101
  day: 01
PublicationDecade 2010
PublicationYear 2013
Publisher ProQuest Dissertations & Theses
Publisher_xml – name: ProQuest Dissertations & Theses
SSID ssib000933042
Score 1.6131569
Snippet Many inverse problems arising in different disciplines including exploration geophysics, medical imaging and nondestructive evaluation can be formulated as a...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Applied Mathematics
Geophysical engineering
Geophysics
Mathematics
Title Inverse boundary value problems for time-harmonic waves: Conditional stability and iterative reconstruction
URI https://www.proquest.com/docview/1477535949
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwFLSgMAAD3-KjIA-sFiSxE5uFoVBYqBg6dKviLwlVSqFGRf33vGfcUAmJhSmOsjhOcrl7z7oj5EpY6ZTQJZOWG8ZVUTJdw7uMnriuwOLYjYlhE9VgIEcj9ZIKbiFtq1xiYgRqOzVYI7_OeAXMWiiu7t7eGaZGYXc1RWiskw1kNuid_7hKf1q1HpEaQ4Vksnlqz39hcPyx9Hf_O6U9snO_0lHfJ2uuOSDbz60ZazgkE_TSmAVHdYxQmi0oOnw7mrJkAgXeSjFjnqGNNVrl0s967sIt7U2xoR2LhRRYZNxHu6B1Y-m3GTMgJY2KunWhPSLD_sOw98RSxgKbVLlklXRZbiXQlNKUANsaBI2VJoeB9kI5YXzFbQ4iqvYic96DussBEXWRe8G9L45Jp5k27oRQJ1WthJceBAs3cNAOAKMGxVRkWWXtKekuV3GcvpMw_lnCs78vn5OtPAZRYPGjSzpwW-6CbJr5x2uYXcbH_gXVdbm3
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8NAFH7UKrgc3HGpOgc9Bs1kmwjiobW2dMFDD72FZBYoxVSb0tIf5X_0zTSNBcFbD56SEAhM3uN7y7z5PoBbTzAZeolvMeFyyw0d30pi9GXNiSsd3Rx74EZsIuh2Wb8fvpXga3kWRo9VLjHRALUYcd0jv7fdADNrL3TD549PS6tG6d3VpYTGwi1acj7Dki17atbQvneU1l961YaVqwpYw4AyK2DSpoJhYPa5j0CVYAovGKd4kygvlB5XgSsolg2x8mypFNYzFDEgcajyXKUc_OwGbLpOYOsJwtfVbKtoDpjAoDWMWM4qVTz_gnwTx-r7_-wPHMBebWVe4BBKMj2C3U5BNZsdw1AzhYwzSRIjEDWeE81fLkmulJMRzMrJZPAuLU3SrYmAySyeyuyRVEd6u960QgnmyGZKeE7iVJAF1TTGAWL6BQXH7gn01rHSUyino1SeAZEsjENPMYXlmMvxkkiEwxjrQce2AyHOobI0WpSjQBb9WOzi79c3sN3oddpRu9ltXcIONZIbus1TgTIuUV7BFp9OBtn42ngcgWjN9v0GJnsXSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.genre=dissertation&rft.title=Inverse+boundary+value+problems+for+time-harmonic+waves%3A+Conditional+stability+and+iterative+reconstruction&rft.DBID=053%3B0BH%3BCBPLH%3BEU9%3BG20%3BM8-%3BOK5%3BPHGZT%3BPKEHL%3BPQEST%3BPQQKQ%3BPQUKI&rft.PQPubID=18750&rft.au=Qiu%2C+Lingyun&rft.date=2013-01-01&rft.pub=ProQuest+Dissertations+%26+Theses&rft.isbn=9781303610868&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3182166591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781303610868/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781303610868/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781303610868/sc.gif&client=summon&freeimage=true