A new renormalization method for the asymptotic solution of multiple scale singular perturbation problems
This thesis considers the asymptotic integration of special classes of initial value problems involving a nonlinear regular perturbation scaled by a small parameter > 0. For t = [special characters omitted](1/ ), most of these problems were classically solved by using either the method of averagi...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Format: | Dissertation |
| Sprache: | Englisch |
| Veröffentlicht: |
ProQuest Dissertations & Theses
01.01.2002
|
| Schlagworte: | |
| ISBN: | 0493683291, 9780493683294 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This thesis considers the asymptotic integration of special classes of initial value problems involving a nonlinear regular perturbation scaled by a small parameter > 0. For t = [special characters omitted](1/ ), most of these problems were classically solved by using either the method of averaging or of multiple scales to exorcise secular terms that arise in the natural power series procedure. We present higher order asymptotic approximations by the methods of multiple scales and averaging for weakly nonlinear oscillators. A less well-known invariance condition method for weakly nonlinear vector systems with slowly varying coefficients is formulated in terms of matched asymptotic expansions to obtain higher order asymptotic approximations. Our main result is the construction of a new renormalization method for solving multiple scale singular perturbation problems. For weakly nonlinear vector systems, we derive anew renormalization ansatz that is straightforward and effective. Moreover, it indicates what problems might occur in providing the asymptotic solution on very long time intervals. |
|---|---|
| AbstractList | This thesis considers the asymptotic integration of special classes of initial value problems involving a nonlinear regular perturbation scaled by a small parameter > 0. For t = [special characters omitted](1/ ), most of these problems were classically solved by using either the method of averaging or of multiple scales to exorcise secular terms that arise in the natural power series procedure. We present higher order asymptotic approximations by the methods of multiple scales and averaging for weakly nonlinear oscillators. A less well-known invariance condition method for weakly nonlinear vector systems with slowly varying coefficients is formulated in terms of matched asymptotic expansions to obtain higher order asymptotic approximations. Our main result is the construction of a new renormalization method for solving multiple scale singular perturbation problems. For weakly nonlinear vector systems, we derive anew renormalization ansatz that is straightforward and effective. Moreover, it indicates what problems might occur in providing the asymptotic solution on very long time intervals. |
| Author | Mudavanhu, Blessing |
| Author_xml | – sequence: 1 givenname: Blessing surname: Mudavanhu fullname: Mudavanhu, Blessing |
| BookMark | eNotj0tLAzEYRQMqaGv_Q3A_kJk8JlmW4gsKbrovX2YSG80kYx6I_npH6-bezeUc7gpdhhjMBVoRpqiQtFPtNdrk7DQhRFFKWHeD3BYH84mTCTFN4N03FBcDnkw5xRHbmHA5GQz5a5pLLG7AOfr6N4kWT9UXN3uD8wC_6cJr9ZDwbFKpSZ9Rc4ramynfoisLPpvNf6_R4eH-sHtq9i-Pz7vtvnlnom-GAaCVVrJ27Mee9wyEVIKBBME1N1K0loBkVnfWLisKIHVrDZMKhuWUoGt0d8Yu3o9qcjm-xZrCYjxSwnkrFO_pD-9JV6I |
| ContentType | Dissertation |
| Copyright | Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works. |
| Copyright_xml | – notice: Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works. |
| DBID | 053 0BH 0PY CBPLH EU9 G20 M8- PHGZT PKEHL PQEST PQQKQ PQUKI |
| DatabaseName | Dissertations & Theses Europe Full Text: Science & Technology ProQuest Dissertations and Theses Professional Dissertations & Theses @ University of Washington WCLP ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection ProQuest Dissertations & Theses A&I ProQuest Dissertations & Theses Global ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | Dissertations & Theses Europe Full Text: Science & Technology ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest One Academic Eastern Edition Dissertations & Theses @ University of Washington WCLP ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection ProQuest Dissertations and Theses Professional ProQuest One Academic ProQuest Dissertations & Theses A&I ProQuest One Academic (New) ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection ProQuest Dissertations & Theses Global |
| DatabaseTitleList | Dissertations & Theses Europe Full Text: Science & Technology |
| Database_xml | – sequence: 1 dbid: G20 name: ProQuest Dissertations & Theses Global url: https://www.proquest.com/pqdtglobal1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 727375751 |
| Genre | Dissertation/Thesis |
| GroupedDBID | 053 0BD 0BH 0PY ALMA_UNASSIGNED_HOLDINGS CBPLH EU9 G20 M8- PHGZT PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-k467-ccaa18f841d7d7574a68964a8a65b5e861f0a84fb2fff843aa8b1fe489ac09363 |
| IEDL.DBID | G20 |
| ISBN | 0493683291 9780493683294 |
| IngestDate | Mon Jun 30 04:15:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-k467-ccaa18f841d7d7574a68964a8a65b5e861f0a84fb2fff843aa8b1fe489ac09363 |
| Notes | SourceType-Dissertations & Theses-1 ObjectType-Dissertation/Thesis-1 content type line 12 |
| PQID | 305516957 |
| PQPubID | 18750 |
| ParticipantIDs | proquest_journals_305516957 |
| PublicationCentury | 2000 |
| PublicationDate | 20020101 |
| PublicationDateYYYYMMDD | 2002-01-01 |
| PublicationDate_xml | – month: 01 year: 2002 text: 20020101 day: 01 |
| PublicationDecade | 2000 |
| PublicationYear | 2002 |
| Publisher | ProQuest Dissertations & Theses |
| Publisher_xml | – name: ProQuest Dissertations & Theses |
| SSID | ssib000933042 ssib003940525 |
| Score | 1.3593241 |
| Snippet | This thesis considers the asymptotic integration of special classes of initial value problems involving a nonlinear regular perturbation scaled by a small... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Mathematics |
| Title | A new renormalization method for the asymptotic solution of multiple scale singular perturbation problems |
| URI | https://www.proquest.com/docview/305516957 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMAADbwEF5IHVAid-TggBFQNUDBXqVjmJLVVAUpIWiX_P2XVKJSQWlkhRHCe6u9x9se_uQ-gizWjBE5EQZwpOIARwkgEQJ47bNMmoUzZk-b48yn5fDYf6OebmNDGtsvWJwVEXVe7XyC99ZyoqNJfXkw_iSaP85mpk0FhFa764NtT6LqOf-c_6j_lq5lnbQl26TgXYsqZtD554zn655BBnetv_fMMdtHW3tL--i1ZsuYc2nxatWZt9NL7BgKRxbUuPVt9iGSaeM0ljgLAYBmPTfL1PphXcglvjxJXDbfohbkC1cIS459NY8QQeOauz-VSRo6Y5QIPe_eD2gUS-BfLq3SXo0lDlFKOFLCSXzAilBTPKCJ5xqwR1V0YxlyXOwajUGAXKtExpk4OoRXqIOmVV2iOEjTA5dZrDJJbZhGepcQKQgZEpE1bmx6jbinAUv5lmtJDfyZ9Xu2gjMLKEZZBT1JnWM3uG1vPP6bipz4MFfAOyZrvi |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwFD7MKXh58I46L3nQx6JtkzR9EBHn2NgFH4bsbaRtAkNd57op-0_-SE96mQPBtz34UihN0rTnmuSc8wFcuoEdMYc7lpYRs9AEMCtAR9zSTLlOYGuh0ijf55bX6Yhez38qwVeRC2PCKgudmCrqKA7NHvm1qUxlc595d6N3y4BGmcPVAkEj44qmmn3iii25bVSRvFeOU3vsPtStHFTAejE6AScsbaEFtSMv8phHJRc-p1JIzgKmBLf1jRRUB47W2MqVUuCMFRW-DHHxz10cdgVWqSl0Z1KLF52tbG_gR1p8akDi0jR47Imi49tFyZ_8nv6yAKlZq23_rx-yA1vVheiBXSip4R5stueFZ5N9GNwTXCeQsRoaX_w1TzIlGU42QQedYGMik9nbaBJjF1KIHok1KYIrSYKMi1e06iZIl4zwldNxkA2VI_AkB9BdxnceQnkYD9UREMllaGuf4SCKKocFrtQc_R7puZQrLzyGSkGxfq4Rkv6cXCd_Pr2A9Xq33eq3Gp1mBTZS7Jl0w-cUypPxVJ3BWvgxGSTj85T5CPSXTNtvUTAYvg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.genre=dissertation&rft.title=A+new+renormalization+method+for+the+asymptotic+solution+of+multiple+scale+singular+perturbation+problems&rft.DBID=053%3B0BH%3B0PY%3BCBPLH%3BEU9%3BG20%3BM8-%3BPHGZT%3BPKEHL%3BPQEST%3BPQQKQ%3BPQUKI&rft.PQPubID=18750&rft.au=Mudavanhu%2C+Blessing&rft.date=2002-01-01&rft.pub=ProQuest+Dissertations+%26+Theses&rft.isbn=0493683291&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=727375751 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780493683294/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780493683294/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780493683294/sc.gif&client=summon&freeimage=true |

