A new renormalization method for the asymptotic solution of multiple scale singular perturbation problems

This thesis considers the asymptotic integration of special classes of initial value problems involving a nonlinear regular perturbation scaled by a small parameter > 0. For t = [special characters omitted](1/ ), most of these problems were classically solved by using either the method of averagi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mudavanhu, Blessing
Format: Dissertation
Sprache:Englisch
Veröffentlicht: ProQuest Dissertations & Theses 01.01.2002
Schlagworte:
ISBN:0493683291, 9780493683294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This thesis considers the asymptotic integration of special classes of initial value problems involving a nonlinear regular perturbation scaled by a small parameter > 0. For t = [special characters omitted](1/ ), most of these problems were classically solved by using either the method of averaging or of multiple scales to exorcise secular terms that arise in the natural power series procedure. We present higher order asymptotic approximations by the methods of multiple scales and averaging for weakly nonlinear oscillators. A less well-known invariance condition method for weakly nonlinear vector systems with slowly varying coefficients is formulated in terms of matched asymptotic expansions to obtain higher order asymptotic approximations. Our main result is the construction of a new renormalization method for solving multiple scale singular perturbation problems. For weakly nonlinear vector systems, we derive anew renormalization ansatz that is straightforward and effective. Moreover, it indicates what problems might occur in providing the asymptotic solution on very long time intervals.
AbstractList This thesis considers the asymptotic integration of special classes of initial value problems involving a nonlinear regular perturbation scaled by a small parameter > 0. For t = [special characters omitted](1/ ), most of these problems were classically solved by using either the method of averaging or of multiple scales to exorcise secular terms that arise in the natural power series procedure. We present higher order asymptotic approximations by the methods of multiple scales and averaging for weakly nonlinear oscillators. A less well-known invariance condition method for weakly nonlinear vector systems with slowly varying coefficients is formulated in terms of matched asymptotic expansions to obtain higher order asymptotic approximations. Our main result is the construction of a new renormalization method for solving multiple scale singular perturbation problems. For weakly nonlinear vector systems, we derive anew renormalization ansatz that is straightforward and effective. Moreover, it indicates what problems might occur in providing the asymptotic solution on very long time intervals.
Author Mudavanhu, Blessing
Author_xml – sequence: 1
  givenname: Blessing
  surname: Mudavanhu
  fullname: Mudavanhu, Blessing
BookMark eNotj0tLAzEYRQMqaGv_Q3A_kJk8JlmW4gsKbrovX2YSG80kYx6I_npH6-bezeUc7gpdhhjMBVoRpqiQtFPtNdrk7DQhRFFKWHeD3BYH84mTCTFN4N03FBcDnkw5xRHbmHA5GQz5a5pLLG7AOfr6N4kWT9UXN3uD8wC_6cJr9ZDwbFKpSZ9Rc4ramynfoisLPpvNf6_R4eH-sHtq9i-Pz7vtvnlnom-GAaCVVrJ27Mee9wyEVIKBBME1N1K0loBkVnfWLisKIHVrDZMKhuWUoGt0d8Yu3o9qcjm-xZrCYjxSwnkrFO_pD-9JV6I
ContentType Dissertation
Copyright Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Copyright_xml – notice: Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
DBID 053
0BH
0PY
CBPLH
EU9
G20
M8-
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
DatabaseName Dissertations & Theses Europe Full Text: Science & Technology
ProQuest Dissertations and Theses Professional
Dissertations & Theses @ University of Washington WCLP
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest Dissertations & Theses A&I
ProQuest Dissertations & Theses Global
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle Dissertations & Theses Europe Full Text: Science & Technology
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest One Academic Eastern Edition
Dissertations & Theses @ University of Washington WCLP
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest Dissertations and Theses Professional
ProQuest One Academic
ProQuest Dissertations & Theses A&I
ProQuest One Academic (New)
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
ProQuest Dissertations & Theses Global
DatabaseTitleList Dissertations & Theses Europe Full Text: Science & Technology
Database_xml – sequence: 1
  dbid: G20
  name: ProQuest Dissertations & Theses Global
  url: https://www.proquest.com/pqdtglobal1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 727375751
Genre Dissertation/Thesis
GroupedDBID 053
0BD
0BH
0PY
ALMA_UNASSIGNED_HOLDINGS
CBPLH
EU9
G20
M8-
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-k467-ccaa18f841d7d7574a68964a8a65b5e861f0a84fb2fff843aa8b1fe489ac09363
IEDL.DBID G20
ISBN 0493683291
9780493683294
IngestDate Mon Jun 30 04:15:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-k467-ccaa18f841d7d7574a68964a8a65b5e861f0a84fb2fff843aa8b1fe489ac09363
Notes SourceType-Dissertations & Theses-1
ObjectType-Dissertation/Thesis-1
content type line 12
PQID 305516957
PQPubID 18750
ParticipantIDs proquest_journals_305516957
PublicationCentury 2000
PublicationDate 20020101
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – month: 01
  year: 2002
  text: 20020101
  day: 01
PublicationDecade 2000
PublicationYear 2002
Publisher ProQuest Dissertations & Theses
Publisher_xml – name: ProQuest Dissertations & Theses
SSID ssib000933042
ssib003940525
Score 1.3593241
Snippet This thesis considers the asymptotic integration of special classes of initial value problems involving a nonlinear regular perturbation scaled by a small...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Mathematics
Title A new renormalization method for the asymptotic solution of multiple scale singular perturbation problems
URI https://www.proquest.com/docview/305516957
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMAADbwEF5IHVAid-TggBFQNUDBXqVjmJLVVAUpIWiX_P2XVKJSQWlkhRHCe6u9x9se_uQ-gizWjBE5EQZwpOIARwkgEQJ47bNMmoUzZk-b48yn5fDYf6OebmNDGtsvWJwVEXVe7XyC99ZyoqNJfXkw_iSaP85mpk0FhFa764NtT6LqOf-c_6j_lq5lnbQl26TgXYsqZtD554zn655BBnetv_fMMdtHW3tL--i1ZsuYc2nxatWZt9NL7BgKRxbUuPVt9iGSaeM0ljgLAYBmPTfL1PphXcglvjxJXDbfohbkC1cIS459NY8QQeOauz-VSRo6Y5QIPe_eD2gUS-BfLq3SXo0lDlFKOFLCSXzAilBTPKCJ5xqwR1V0YxlyXOwajUGAXKtExpk4OoRXqIOmVV2iOEjTA5dZrDJJbZhGepcQKQgZEpE1bmx6jbinAUv5lmtJDfyZ9Xu2gjMLKEZZBT1JnWM3uG1vPP6bipz4MFfAOyZrvi
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwFD7MKXh58I46L3nQx6JtkzR9EBHn2NgFH4bsbaRtAkNd57op-0_-SE96mQPBtz34UihN0rTnmuSc8wFcuoEdMYc7lpYRs9AEMCtAR9zSTLlOYGuh0ijf55bX6Yhez38qwVeRC2PCKgudmCrqKA7NHvm1qUxlc595d6N3y4BGmcPVAkEj44qmmn3iii25bVSRvFeOU3vsPtStHFTAejE6AScsbaEFtSMv8phHJRc-p1JIzgKmBLf1jRRUB47W2MqVUuCMFRW-DHHxz10cdgVWqSl0Z1KLF52tbG_gR1p8akDi0jR47Imi49tFyZ_8nv6yAKlZq23_rx-yA1vVheiBXSip4R5stueFZ5N9GNwTXCeQsRoaX_w1TzIlGU42QQedYGMik9nbaBJjF1KIHok1KYIrSYKMi1e06iZIl4zwldNxkA2VI_AkB9BdxnceQnkYD9UREMllaGuf4SCKKocFrtQc_R7puZQrLzyGSkGxfq4Rkv6cXCd_Pr2A9Xq33eq3Gp1mBTZS7Jl0w-cUypPxVJ3BWvgxGSTj85T5CPSXTNtvUTAYvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.genre=dissertation&rft.title=A+new+renormalization+method+for+the+asymptotic+solution+of+multiple+scale+singular+perturbation+problems&rft.DBID=053%3B0BH%3B0PY%3BCBPLH%3BEU9%3BG20%3BM8-%3BPHGZT%3BPKEHL%3BPQEST%3BPQQKQ%3BPQUKI&rft.PQPubID=18750&rft.au=Mudavanhu%2C+Blessing&rft.date=2002-01-01&rft.pub=ProQuest+Dissertations+%26+Theses&rft.isbn=0493683291&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=727375751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780493683294/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780493683294/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780493683294/sc.gif&client=summon&freeimage=true