Skip to content
VuFind
  • Institutional Login
    • English
    • Deutsch
    • Čeština
    • Slovak
Testovacia prevádzka

Search in PRIMO

  • Catalog
  • E knihy CVTI SR
  • Summon (testovací prístup)
  • EBSCO Discovery Service (testovací prístup)
Advanced
  • Reliable and Rapid Traffic Con...
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Save to List
  • Permanent link
Loading…
Cover Image

QR Code

Reliable and Rapid Traffic Congestion Detection Approach Based on Deep Residual Learning and Motion Trajectories

Saved in:
Bibliographic Details
Published in:IEEE Access Vol. 8; pp. 182180 - 182192
Main Authors: Mohamed A. Abdelwahab, Mohamed Abdel‐Nasser, Maiya Hori
Format: Journal Article
Language:Japanese
Published: Institute of Electrical and Electronics Engineers (IEEE) 01.01.2020
Subjects:
Algorithm
Anomaly Detection in High-Dimensional Data
Artificial intelligence
Benchmark (surveying)
Biochemistry
Building and Construction
Chemistry
Computer science
Computer vision
Computer Vision and Pattern Recognition
Congestion
deep learning
Electrical engineering. Electronics. Nuclear engineering
Engineering
Gene
Geodesy
Geography
Machine learning
Motion Detection
Multiple Object Tracking
Object Tracking
Pattern recognition (psychology)
Physical Sciences
Real-time Tracking
Residual
residual network
Robustness (evolution)
TK1-9971
Traffic congestion
Traffic Flow Prediction and Forecasting
traffic surveillance system
Transport engineering
Visual Object Tracking and Person Re-identification
Visual Tracking
ISSN:2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
  • Description
  • Comments
  • Staff View
Be the first to leave a comment!
You must be logged in first

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels

Need Help?

  • Search Tips
  • NAŠA (NÁRODNÁ) VEDECKÁ KNIŽNICA
  • Knižničný poriadok
  • Cenník poskytovaných služieb
  • Návrh na kúpu dokumentov
  • FAQs
  • Cookie Settings
  • Helpdesk NVK CVTI SR
    • +421 2/222 001 34
    • kniznica.nvk@cvtisr.sk
© 2025 CVTISR Powered by Summon™ from Serials Solutions, a division of ProQuest.