Reliable and Rapid Traffic Congestion Detection Approach Based on Deep Residual Learning and Motion Trajectories
Uložené v:
| Vydané v: | IEEE Access Ročník 8; s. 182180 - 182192 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | Japanese |
| Vydavateľské údaje: |
Institute of Electrical and Electronics Engineers (IEEE)
01.01.2020
|
| Predmet: | |
| ISSN: | 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Author | Maiya Hori Mohamed Abdel‐Nasser Mohamed A. Abdelwahab |
|---|---|
| Author_xml | – sequence: 1 orcidid: 0000-0002-1074-2441 fullname: Mohamed A. Abdelwahab – sequence: 2 fullname: Mohamed Abdel‐Nasser – sequence: 3 orcidid: 0000-0002-8300-1556 fullname: Maiya Hori |
| BackLink | https://cir.nii.ac.jp/crid/1870865117955826304$$DView record in CiNii |
| BookMark | eNotjk1PwzAMhiMEEmPsxg_IgWshab6PY3xKRUjT7shNnJGpSqtm8PvpCj7Yr2w9j3xFznOfkZAbzu40066-3yvv6-oHpbVnZFFz7SqhhL4kq1IObCo7rZRZkGGLXYK2Qwo50C0MKdDdCDEmTzd93mM5pj7TRzyin9N6GMYe_Bd9gIKBzjcc6BZLCt_Q0QZhzCnvZ997PzOT8DDh_ZiwXJOLCF3B1f9ckt3z027zWjUfL2-bdVMdnJKnZ0V0rQltcEY43TpmWPRGWdkKCSFKbUBYsKAD99wyVgffKhnDhEnvxJLc_mlzSp8-nTq3hlmtODdOKVtrwaT4BQP7Wrs |
| ContentType | Journal Article |
| DBID | RYH |
| DOI | 10.60692/g5cc2-ve488 10.1109/access.2020.3028395 10.60692/7y4qx-fwz17 |
| DatabaseName | CiNii Complete |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering Chemistry Computer Science |
| EISSN | 2169-3536 |
| EndPage | 182192 |
| GroupedDBID | 0R~ 5VS 6IK AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RNS RYH |
| ID | FETCH-LOGICAL-j954-3533f9b7dbd97396b9070fc7584b34adf467a38a8a6d1c18002dcb54fd3f94c93 |
| IngestDate | Thu Jun 26 22:29:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | Japanese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-j954-3533f9b7dbd97396b9070fc7584b34adf467a38a8a6d1c18002dcb54fd3f94c93 |
| ORCID | 0000-0002-1074-2441 0000-0002-8300-1556 |
| OpenAccessLink | http://dx.doi.org/10.60692/g5cc2-ve488 |
| PageCount | 13 |
| ParticipantIDs | nii_cinii_1870865117955826304 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Access |
| PublicationYear | 2020 |
| Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
| Publisher_xml | – name: Institute of Electrical and Electronics Engineers (IEEE) |
| SSID | ssj0000816957 |
| Score | 2.2040224 |
| SourceID | nii |
| SourceType | Publisher |
| StartPage | 182180 |
| SubjectTerms | Algorithm Anomaly Detection in High-Dimensional Data Artificial intelligence Benchmark (surveying) Biochemistry Building and Construction Chemistry Computer science Computer vision Computer Vision and Pattern Recognition Congestion deep learning Electrical engineering. Electronics. Nuclear engineering Engineering Gene Geodesy Geography Machine learning Motion Detection Multiple Object Tracking Object Tracking Pattern recognition (psychology) Physical Sciences Real-time Tracking Residual residual network Robustness (evolution) TK1-9971 Traffic congestion Traffic Flow Prediction and Forecasting traffic surveillance system Transport engineering Visual Object Tracking and Person Re-identification Visual Tracking |
| Title | Reliable and Rapid Traffic Congestion Detection Approach Based on Deep Residual Learning and Motion Trajectories |
| URI | https://cir.nii.ac.jp/crid/1870865117955826304 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals databaseCode: DOA dateStart: 20130101 customDbUrl: isFulltext: true eissn: 2169-3536 dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0000816957 providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources databaseCode: M~E dateStart: 20130101 customDbUrl: isFulltext: true eissn: 2169-3536 dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssj0000816957 providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaEwgxw4BHK8GpHB24Zp35IlnUMJdADzXDIoTdGL1NnOiE0IU058DP5PezKlmNaGODARZOREsnxftZq17v7EfLSgUoXysaRdaWJWFG6SCfwXGll81RpyUSqPNmEmEyKkxP5vtf7HnJh1mdiPi82G7n4r6KGPhA2ps7-g7jbSaEDPoPQoQWxQ_tXgscgY58P5VMP1aKyWMEcK0Vgeh--TkKJv3YrV7OEj5qq4oNXoNDswI-5Bfr16zytd8F54kMyPOkPTjjz7v4Qgtgcb9F0RAKKENbho3lPFWjcwWg4GGnrzi7UqdLXBnGkjbuYqOVyGzR8rKpLNTiCtboeijS-4qH4Keph7Ml92kII45brZ9kWYPTeZrze4AtxfjtMk1xGGa_LpYS9u-jsvWApJTUrVKPJsaMm2ruqJ8Bqk1h49iM3Jo3WjtXUgtfVia_GqvxtG-JfG2Z4HqtpQX83qbhknzdRefE1ETfIzVRwiQrj-NvW94dkJ5KLpggWLHLwiyXqLA0_6UFnym535_LhaDSvqs7RaPqA3GtsGjqqsfiQ9GaqT24fBirBPrkfuENoo0r65G6nECZ8-a1rSqc_IosAYAqiox7AtAEw3QKYtgCmAcDUA5j6MbegAcA0ANjPVwOYdgG8S6ZvxtPDo6jhBYlmkjPEQFZKLay2UmQy1xLUVmnA8GU6Y8qWoPtVVqhC5TYxCVpE1mjOSgs_Y0Zmj8nO_NPcPSGUl9YJGds4L2OmlJSmtGXiCsNjJa3WT8ke3NUPpsI2AdVW5BxrKHIOVnkWs2d_GH9O7mwfiBdkZ3X-xe2RW2a9qpbn-97_s--h8QOHbJua |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+and+Rapid+Traffic+Congestion+Detection+Approach+Based+on+Deep+Residual+Learning+and+Motion+Trajectories&rft.jtitle=IEEE+Access&rft.au=Mohamed+A.+Abdelwahab&rft.au=Mohamed+Abdel%E2%80%90Nasser&rft.au=Maiya+Hori&rft.date=2020-01-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers+%28IEEE%29&rft.eissn=2169-3536&rft.volume=8&rft.spage=182180&rft.epage=182192&rft_id=info:doi/10.60692%2Fg5cc2-ve488&rft_id=info:doi/10.1109%2Faccess.2020.3028395&rft_id=info:doi/10.60692%2F7y4qx-fwz17 |