Author Maiya Hori
Mohamed Abdel‐Nasser
Mohamed A. Abdelwahab
Author_xml – sequence: 1
  orcidid: 0000-0002-1074-2441
  fullname: Mohamed A. Abdelwahab
– sequence: 2
  fullname: Mohamed Abdel‐Nasser
– sequence: 3
  orcidid: 0000-0002-8300-1556
  fullname: Maiya Hori
BackLink https://cir.nii.ac.jp/crid/1870865117955826304$$DView record in CiNii
BookMark eNotjk1PwzAMhiMEEmPsxg_IgWshab6PY3xKRUjT7shNnJGpSqtm8PvpCj7Yr2w9j3xFznOfkZAbzu40066-3yvv6-oHpbVnZFFz7SqhhL4kq1IObCo7rZRZkGGLXYK2Qwo50C0MKdDdCDEmTzd93mM5pj7TRzyin9N6GMYe_Bd9gIKBzjcc6BZLCt_Q0QZhzCnvZ997PzOT8DDh_ZiwXJOLCF3B1f9ckt3z027zWjUfL2-bdVMdnJKnZ0V0rQltcEY43TpmWPRGWdkKCSFKbUBYsKAD99wyVgffKhnDhEnvxJLc_mlzSp8-nTq3hlmtODdOKVtrwaT4BQP7Wrs
ContentType Journal Article
DBID RYH
DOI 10.60692/g5cc2-ve488
10.1109/access.2020.3028395
10.60692/7y4qx-fwz17
DatabaseName CiNii Complete
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Chemistry
Computer Science
EISSN 2169-3536
EndPage 182192
GroupedDBID 0R~
5VS
6IK
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RNS
RYH
ID FETCH-LOGICAL-j954-3533f9b7dbd97396b9070fc7584b34adf467a38a8a6d1c18002dcb54fd3f94c93
IngestDate Thu Jun 26 22:29:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j954-3533f9b7dbd97396b9070fc7584b34adf467a38a8a6d1c18002dcb54fd3f94c93
ORCID 0000-0002-1074-2441
0000-0002-8300-1556
OpenAccessLink http://dx.doi.org/10.60692/g5cc2-ve488
PageCount 13
ParticipantIDs nii_cinii_1870865117955826304
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE Access
PublicationYear 2020
Publisher Institute of Electrical and Electronics Engineers (IEEE)
Publisher_xml – name: Institute of Electrical and Electronics Engineers (IEEE)
SSID ssj0000816957
Score 2.2040224
SourceID nii
SourceType Publisher
StartPage 182180
SubjectTerms Algorithm
Anomaly Detection in High-Dimensional Data
Artificial intelligence
Benchmark (surveying)
Biochemistry
Building and Construction
Chemistry
Computer science
Computer vision
Computer Vision and Pattern Recognition
Congestion
deep learning
Electrical engineering. Electronics. Nuclear engineering
Engineering
Gene
Geodesy
Geography
Machine learning
Motion Detection
Multiple Object Tracking
Object Tracking
Pattern recognition (psychology)
Physical Sciences
Real-time Tracking
Residual
residual network
Robustness (evolution)
TK1-9971
Traffic congestion
Traffic Flow Prediction and Forecasting
traffic surveillance system
Transport engineering
Visual Object Tracking and Person Re-identification
Visual Tracking
Title Reliable and Rapid Traffic Congestion Detection Approach Based on Deep Residual Learning and Motion Trajectories
URI https://cir.nii.ac.jp/crid/1870865117955826304
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  databaseCode: DOA
  dateStart: 20130101
  customDbUrl:
  isFulltext: true
  eissn: 2169-3536
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0000816957
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  databaseCode: M~E
  dateStart: 20130101
  customDbUrl:
  isFulltext: true
  eissn: 2169-3536
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssj0000816957
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaEwgxw4BHK8GpHB24Zp35IlnUMJdADzXDIoTdGL1NnOiE0IU058DP5PezKlmNaGODARZOREsnxftZq17v7EfLSgUoXysaRdaWJWFG6SCfwXGll81RpyUSqPNmEmEyKkxP5vtf7HnJh1mdiPi82G7n4r6KGPhA2ps7-g7jbSaEDPoPQoQWxQ_tXgscgY58P5VMP1aKyWMEcK0Vgeh--TkKJv3YrV7OEj5qq4oNXoNDswI-5Bfr16zytd8F54kMyPOkPTjjz7v4Qgtgcb9F0RAKKENbho3lPFWjcwWg4GGnrzi7UqdLXBnGkjbuYqOVyGzR8rKpLNTiCtboeijS-4qH4Keph7Ml92kII45brZ9kWYPTeZrze4AtxfjtMk1xGGa_LpYS9u-jsvWApJTUrVKPJsaMm2ruqJ8Bqk1h49iM3Jo3WjtXUgtfVia_GqvxtG-JfG2Z4HqtpQX83qbhknzdRefE1ETfIzVRwiQrj-NvW94dkJ5KLpggWLHLwiyXqLA0_6UFnym535_LhaDSvqs7RaPqA3GtsGjqqsfiQ9GaqT24fBirBPrkfuENoo0r65G6nECZ8-a1rSqc_IosAYAqiox7AtAEw3QKYtgCmAcDUA5j6MbegAcA0ANjPVwOYdgG8S6ZvxtPDo6jhBYlmkjPEQFZKLay2UmQy1xLUVmnA8GU6Y8qWoPtVVqhC5TYxCVpE1mjOSgs_Y0Zmj8nO_NPcPSGUl9YJGds4L2OmlJSmtGXiCsNjJa3WT8ke3NUPpsI2AdVW5BxrKHIOVnkWs2d_GH9O7mwfiBdkZ3X-xe2RW2a9qpbn-97_s--h8QOHbJua
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+and+Rapid+Traffic+Congestion+Detection+Approach+Based+on+Deep+Residual+Learning+and+Motion+Trajectories&rft.jtitle=IEEE+Access&rft.au=Mohamed+A.+Abdelwahab&rft.au=Mohamed+Abdel%E2%80%90Nasser&rft.au=Maiya+Hori&rft.date=2020-01-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers+%28IEEE%29&rft.eissn=2169-3536&rft.volume=8&rft.spage=182180&rft.epage=182192&rft_id=info:doi/10.60692%2Fg5cc2-ve488&rft_id=info:doi/10.1109%2Faccess.2020.3028395&rft_id=info:doi/10.60692%2F7y4qx-fwz17