Structure of an Ultrathin Oxide on Pt3Sn(111) Solved by Machine Learning Enhanced Global Optimization

Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory‐based search...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition Jg. 61; H. 25
Hauptverfasser: Merte, Lindsay R., Bisbo, Malthe Kjær, Sokolović, Igor, Setvín, Martin, Hagman, Benjamin, Shipilin, Mikhail, Schmid, Michael, Diebold, Ulrike, Lundgren, Edvin, Hammer, Bjørk
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim Wiley Subscription Services, Inc 20.06.2022
John Wiley and Sons Inc
Ausgabe:International ed. in English
Schlagworte:
ISSN:1433-7851, 1521-3773
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory‐based search algorithms. So far, such methods have been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for surfaces. However, the introduction of machine learning methods has the potential to change this radically. Here, we demonstrate how an evolutionary algorithm, utilizing machine learning for accelerated energy estimation and diverse population generation, can be used to solve an unknown surface structure—the (4×4) surface oxide on Pt3Sn(111)—based on limited experimental input. The algorithm is efficient and robust, and should be broadly applicable in surface studies, where it can replace manual, intuition based model generation. Machine learning techniques can be implemented to accelerate surface structure determination based on density functional theory. The application of such an algorithm is demonstrated here for a surface oxide on Pt3Sn(111) which had eluded determination by experimental methods.
AbstractList Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory‐based search algorithms. So far, such methods have been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for surfaces. However, the introduction of machine learning methods has the potential to change this radically. Here, we demonstrate how an evolutionary algorithm, utilizing machine learning for accelerated energy estimation and diverse population generation, can be used to solve an unknown surface structure—the (4×4) surface oxide on Pt3Sn(111)—based on limited experimental input. The algorithm is efficient and robust, and should be broadly applicable in surface studies, where it can replace manual, intuition based model generation. Machine learning techniques can be implemented to accelerate surface structure determination based on density functional theory. The application of such an algorithm is demonstrated here for a surface oxide on Pt3Sn(111) which had eluded determination by experimental methods.
Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory-based search algorithms. So far, such methods have been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for surfaces. However, the introduction of machine learning methods has the potential to change this radically. Here, we demonstrate how an evolutionary algorithm, utilizing machine learning for accelerated energy estimation and diverse population generation, can be used to solve an unknown surface structure—the (4×4) surface oxide on Pt3Sn(111)—based on limited experimental input. The algorithm is efficient and robust, and should be broadly applicable in surface studies, where it can replace manual, intuition based model generation.
Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory‐based search algorithms. So far, such methods have been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for surfaces. However, the introduction of machine learning methods has the potential to change this radically. Here, we demonstrate how an evolutionary algorithm, utilizing machine learning for accelerated energy estimation and diverse population generation, can be used to solve an unknown surface structure—the (4×4) surface oxide on Pt3Sn(111)—based on limited experimental input. The algorithm is efficient and robust, and should be broadly applicable in surface studies, where it can replace manual, intuition based model generation. Machine learning techniques can be implemented to accelerate surface structure determination based on density functional theory. The application of such an algorithm is demonstrated here for a surface oxide on Pt3Sn(111) which had eluded determination by experimental methods.
Author Diebold, Ulrike
Setvín, Martin
Lundgren, Edvin
Sokolović, Igor
Shipilin, Mikhail
Merte, Lindsay R.
Hammer, Bjørk
Bisbo, Malthe Kjær
Hagman, Benjamin
Schmid, Michael
AuthorAffiliation 4 Department of Surface and Plasma Science Faculty of Mathematics and Physics Charles University 180 00 Prague 8 Czech Republic
1 Materials Science and Applied Mathematics Malmö University 20506 Malmö Sweden
3 Institute of Applied Physics TU Wien 1040 Vienna Austria
2 Center for Interstellar Catalysis Department of Physics and Astronomy Aarhus University 8000 Aarhus Denmark
5 Div. of Synchrotron Radiation Research Lund University 22100 Lund Sweden
AuthorAffiliation_xml – name: 4 Department of Surface and Plasma Science Faculty of Mathematics and Physics Charles University 180 00 Prague 8 Czech Republic
– name: 3 Institute of Applied Physics TU Wien 1040 Vienna Austria
– name: 1 Materials Science and Applied Mathematics Malmö University 20506 Malmö Sweden
– name: 5 Div. of Synchrotron Radiation Research Lund University 22100 Lund Sweden
– name: 2 Center for Interstellar Catalysis Department of Physics and Astronomy Aarhus University 8000 Aarhus Denmark
Author_xml – sequence: 1
  givenname: Lindsay R.
  orcidid: 0000-0002-3213-4199
  surname: Merte
  fullname: Merte, Lindsay R.
  email: lindsay.merte@mau.se
  organization: Malmö University
– sequence: 2
  givenname: Malthe Kjær
  orcidid: 0000-0002-2175-1028
  surname: Bisbo
  fullname: Bisbo, Malthe Kjær
  organization: Aarhus University
– sequence: 3
  givenname: Igor
  orcidid: 0000-0003-1357-396X
  surname: Sokolović
  fullname: Sokolović, Igor
  organization: TU Wien
– sequence: 4
  givenname: Martin
  orcidid: 0000-0002-1210-7740
  surname: Setvín
  fullname: Setvín, Martin
  organization: Charles University
– sequence: 5
  givenname: Benjamin
  surname: Hagman
  fullname: Hagman, Benjamin
  organization: Lund University
– sequence: 6
  givenname: Mikhail
  orcidid: 0000-0003-1623-1578
  surname: Shipilin
  fullname: Shipilin, Mikhail
  organization: Lund University
– sequence: 7
  givenname: Michael
  orcidid: 0000-0003-3373-9357
  surname: Schmid
  fullname: Schmid, Michael
  organization: TU Wien
– sequence: 8
  givenname: Ulrike
  orcidid: 0000-0003-0319-5256
  surname: Diebold
  fullname: Diebold, Ulrike
  organization: TU Wien
– sequence: 9
  givenname: Edvin
  orcidid: 0000-0002-3692-6142
  surname: Lundgren
  fullname: Lundgren, Edvin
  organization: Lund University
– sequence: 10
  givenname: Bjørk
  orcidid: 0000-0002-7849-6347
  surname: Hammer
  fullname: Hammer, Bjørk
  email: hammer@phys.au.dk
  organization: Aarhus University
BookMark eNpVUUtvEzEQtlARfcCVsyUucNji1z58Qaqq0FYKBCn0bI0f2zhy7ODdbQm_vg6pItWXsWc-f9_MfOfoJKboEPpIySUlhH2F6N0lI4wRwYR4g85ozWjF25aflLvgvGq7mp6i82FYF3zXkeYdOuU17wSj_Ay55ZgnM07Z4dRjiPg-jBnGlY948dfbko3418iX8TOl9AtepvDoLNY7_ANMATk8d5Cjjw94FlcQTSnehKQh4MV29Bv_D0af4nv0tocwuA8v8QLdf5_9vr6t5oubu-urebUW5VQOOiKIZsJIKh1tnKa61taaVoJtyiCdbHVPrTG80RJ63tbSMgs9gQZEz_gFggPv8OS2k1bb7DeQdyqBV9uURwgqu6F0bFYqTGpwqqCCN_-bHBToxrZGNoqXYZWQBhRIR5SrTQuyFrooFY1vB43ydeOscbEsLLyWelWJfqUe0qOSnBHZdYXg0wtBTn8mN4xqnaYcy14Ua1rR8obSPUoeUE8-uN2RnhK1913tfVdH39XVz7vZ8cWfAZgbpuc
ContentType Journal Article
Copyright 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Synkrotronljusfysik
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
Fysiska institutionen
Faculty of Science
Lund University
Synchrotron Radiation Research
Department of Physics
Strategiska forskningsområden (SFO)
Strategic research areas (SRA)
NanoLund: Centre for Nanoscience
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Synkrotronljusfysik
– name: Department of Physics
– name: Synchrotron Radiation Research
– name: Strategic research areas (SRA)
– name: Faculty of Science
– name: Lunds universitet
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: NanoLund: Centre for Nanoscience
– name: Profile areas and other strong research environments
– name: Fysiska institutionen
DBID 24P
7TM
K9.
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1002/anie.202204244
DatabaseName Wiley Online Library Open Access
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
DatabaseTitleList

ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID oai_portal_research_lu_se_publications_ab6d7c96_3111_49ca_a9e0_e5c7a954baf0
PMC9320988
ANIE202204244
Genre article
GrantInformation_xml – fundername: Vetenskapsrådet
  funderid: 2018-05374; 349-2011-6491
– fundername: Villum Fonden
  funderid: 16562
– fundername: Danmarks Grundforskningsfond
  funderid: DNRF150
– fundername: Austrian Science Fund
  funderid: F81
– fundername: Knut och Alice Wallenbergs Stiftelse
  funderid: 2015.0058
– fundername: ;
  grantid: 2015.0058
– fundername: ;
  grantid: F81
– fundername: ;
  grantid: 16562
– fundername: ;
  grantid: 2018-05374; 349-2011-6491
– fundername: ;
  grantid: DNRF150
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
K9.
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
O8X
ZZAVC
ID FETCH-LOGICAL-j4444-ea8040b24c919e16eb1b5bddc79ad6785897bf1dcc36b9af3759d2daf0a6a4f23
IEDL.DBID 24P
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788813700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
IngestDate Fri Nov 28 03:14:42 EST 2025
Tue Nov 04 01:58:16 EST 2025
Tue Oct 07 06:57:03 EDT 2025
Wed Jan 22 16:24:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j4444-ea8040b24c919e16eb1b5bddc79ad6785897bf1dcc36b9af3759d2daf0a6a4f23
Notes https://doi.org/10.26434/chemrxiv‐2021‐mtbq2
.
A previous version of this manuscript has been deposited on a preprint server
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
A previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv‐2021‐mtbq2).
ORCID 0000-0002-3692-6142
0000-0003-1623-1578
0000-0002-7849-6347
0000-0002-2175-1028
0000-0003-1357-396X
0000-0002-3213-4199
0000-0003-0319-5256
0000-0002-1210-7740
0000-0003-3373-9357
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202204244
PMID 35384213
PQID 2674736118
PQPubID 946352
PageCount 7
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_ab6d7c96_3111_49ca_a9e0_e5c7a954baf0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9320988
proquest_journals_2674736118
wiley_primary_10_1002_anie_202204244_ANIE202204244
PublicationCentury 2000
PublicationDate June 20, 2022
PublicationDateYYYYMMDD 2022-06-20
PublicationDate_xml – month: 06
  year: 2022
  text: June 20, 2022
  day: 20
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 119
2004; 65
2007; 126
2017; 7
2019; 4
2019; 6
2006; 73
2005; 232
2004; 49
1991; 10
2019; 10
2004; 69
2021; 589
2002; 99
2016; 52
2020; 124
2020; 102
2018; 22
2008; 100
2001; 64
2010; 82
2003; 526
1983; 220
2020; 1
2020; 53
2015; 258
2000; 55
2018; 211
2017; 13
2002; 66
1997; 101
2010; 133
2016; 20
2005; 7
2020; 117
1992; 46
2011; 23
2020; 378
1981; 71
1996; 136
2001; 78
2003; 125
2014; 141
2018; 97
2016; 45
2006; 124
References_xml – volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 580
  year: 1991
  end-page: 586
  publication-title: Organometallics
– volume: 66
  year: 2002
  publication-title: Phys. Rev. B
– volume: 141
  year: 2014
  publication-title: J. Chem. Phys.
– volume: 136
  start-page: 231
  year: 1996
  end-page: 248
  publication-title: Appl. Catal. A
– volume: 211
  start-page: 45
  year: 2018
  end-page: 59
  publication-title: Faraday Discuss.
– volume: 10
  start-page: 2903
  year: 2019
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1486
  year: 2017
  end-page: 1493
  publication-title: J. Chem. Theory Comput.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. B
– volume: 1
  year: 2020
  publication-title: Mach. Learn.: Sci. Technol.
– volume: 49
  start-page: 3901
  year: 2004
  end-page: 3908
  publication-title: Electrochim. Acta
– volume: 126
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 102
  year: 2020
  publication-title: Phys. Rev. B
– volume: 117
  start-page: 14827
  year: 2020
  end-page: 14837
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 55
  start-page: 213
  year: 2000
  end-page: 223
  publication-title: Catal. Today
– volume: 52
  start-page: 10688
  year: 2016
  end-page: 10691
  publication-title: Chem. Commun.
– volume: 526
  start-page: 193
  year: 2003
  end-page: 200
  publication-title: Surf. Sci.
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 211
  start-page: 31
  year: 2018
  end-page: 43
  publication-title: Faraday Discuss.
– volume: 124
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 258
  start-page: 241
  year: 2015
  end-page: 246
  publication-title: Catal. Today
– volume: 99
  start-page: 12562
  year: 2002
  end-page: 12566
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 378
  year: 2020
  publication-title: Philos. Trans. R. Soc. London Ser. A
– volume: 82
  year: 2010
  publication-title: Phys. Rev. B
– volume: 53
  start-page: 1981
  year: 2020
  end-page: 1991
  publication-title: Acc. Chem. Res.
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 71
  start-page: 348
  year: 1981
  end-page: 359
  publication-title: J. Catal.
– volume: 45
  start-page: 5001
  year: 2016
  end-page: 5013
  publication-title: Dalton Trans.
– volume: 589
  start-page: 59
  year: 2021
  end-page: 64
  publication-title: Nature
– volume: 7
  start-page: 3910
  year: 2005
  end-page: 3916
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 97
  year: 2018
  end-page: 112
  publication-title: IEEE Trans. Evol. Comput.
– volume: 46
  start-page: 1649
  year: 1992
  end-page: 1654
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 331
  year: 2019
  end-page: 348
  publication-title: Nat. Rev. Mater.
– volume: 73
  year: 2006
  publication-title: Phys. Rev. B
– volume: 125
  start-page: 2736
  year: 2003
  end-page: 2745
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 16
  year: 2016
  end-page: 37
  publication-title: IEEE Trans. Evol. Comput.
– volume: 101
  start-page: 5111
  year: 1997
  end-page: 5116
  publication-title: J. Phys. Chem. A
– volume: 220
  start-page: 671
  year: 1983
  publication-title: Science
– volume: 7
  start-page: 10357
  year: 2017
  publication-title: Sci. Rep.
– volume: 64
  year: 2001
  publication-title: Phys. Rev. B
– volume: 232
  start-page: 402
  year: 2005
  end-page: 410
  publication-title: J. Catal.
– volume: 65
  start-page: 61
  year: 2004
  end-page: 67
  publication-title: Europhys. Lett.
– volume: 124
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 23
  year: 2011
  publication-title: J. Phys. Condens. Matter
– volume: 69
  year: 2004
  publication-title: Phys. Rev. B
– volume: 133
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 78
  start-page: 2766
  year: 2001
  end-page: 2768
  publication-title: Appl. Phys. Lett.
SSID ssj0028806
Score 2.566828
Snippet Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized...
SourceID swepub
pubmedcentral
proquest
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Algorithms
Atomic structure
Chemical Sciences
Combinatorial analysis
Complexity
Computer applications
Density Functional Calculations
Evolutionary algorithms
Global optimization
Intermetallic compounds
Kemi
Learning algorithms
Machine Learning
Natural Sciences
Naturvetenskap
Search algorithms
Solid surfaces
Structural models
Structure Elucidation
Surface Chemistry
Surface structure
Teoretisk kemi (Här ingår: Beräkningskemi)
Theoretical Chemistry (including Computational Chemistry)
Title Structure of an Ultrathin Oxide on Pt3Sn(111) Solved by Machine Learning Enhanced Global Optimization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202204244
https://www.proquest.com/docview/2674736118
https://pubmed.ncbi.nlm.nih.gov/PMC9320988
Volume 61
WOSCitedRecordID wos000788813700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRYILb8RCqXzgAIeoju34cazKrkCC7YplpYqLZcc2u2jJVt22gn_P2MmGhiPklIcmijXfjD3OzDcIvZaVBthIX_iqEgVXWhWqiqQIxPHSecoF97nZhJxO1dmZnt2o4m_5IfoNt2QZ2V8nA7due_SHNDRVYEN8R2n6ecdvo_2yZDIldVE-60MuQGdbX8RYkdrQ72gbCT0ayg8WmH-nR3YkosP1a56AJg_-_9Mfovvd4hMft2h5hG6F5jG6e7Lr-fYEhXmmk726CHgTsW3wYp3Ya5erBp_-XHm42-DZJZs3b8B5vcXzzfo6eOx-4U85JzPgjq71Gx43y5xbgNumAvgUXNOPrubzKVpMxl9O3hddI4biO4ejCFaBrTvKa13qUArw765y3tdSWw-zXaW0dLH0dc2E0zYyQICn3kZiheWRsmdor9k04TnCkpW1tFZ7pQAMwlpGgvPM1jHyaD0ZoYOdHkxnTVtDBQQ9TEAsNEJyoBtz3nJymMSSPXzSrJaZLRsWqEQrkPzaanEokmMc0xErLc36ymyDOb-xY2qsE17WWhiWYiWua2usDsSECgaiK-5gmCNEs777d7dk0NQkTZte0-Z4-mHcX734F6GX6F46T8lqlBygPUBFeIXu1NeXq-3FYQb_Idp_93my-PgbpLMLEQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgQ9oufCMKA3zgAIdoie3Y8XEarTbRdRNdpYmLZccOLercad0m-O95dtxAOCJySyJbsd6H38957_cQei9KCWojbGbLkmesklVWlU2eudywwljCOLOx2YSYTKqLC3mWsglDLUzLD9EduAXLiP46GHg4kN7_zRoaSrAB4BES_t6x-2g7cF8B_tr-9GU0G3eoCxS0LTGiNAud6DfMjTnZ78_QizH_zpBMPKL9EDbuQaNH_-HrH6OHKQDFB63GPEH3nH-Kdg43fd-eITeNlLK31w6vGqw9ni0Dg-184fHpj4WFpx6f3dCp_wAO7COerpZ3zmLzE5_EvEyHE2XrNzz085hfgNvGAvgU3NNlqvt8jmaj4fnhUZaaMWTfGVyZ0xXYuyGsloV0BQcfb0pjbS2ktrDjlZUUpilsXVNupG4oaIElVje55po1hL5AW37l3UuEBS1qobW0VQUKwbWmuTOW6rppWKNtPkB7G0GoZFFrRTgAH8oBDw2Q6AlHXbW8HCowZfff-MU8MmZDkJrLCkZ-bcXYHxJxjkrkSnO1vFVrp67-ODVV2nAraskVDXiJyVorLV2uXAkLkSUzsMwBIlHg3dwtITRRQdKqk7Q6mBwPu7tX_zLoHdo5Oj8Zq_Hx5PNrtBueh-Q1ku-hLdAQ9wY9qO9uFuvrt8kWfgHqVg7v
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgQcCFN6KwgA8c4BCtYzuOfVwtrVgB3UplpRUXy09aVNJqu7uCf8_YSQPhiMjNjsaKNQ_PODPfIPS6rhSITe0LX1Wi4FLJQlaRFIFYXlpPueA-N5uop1N5dqZmXTZhqoVp8SH6C7ekGdleJwUPGx8PfqOGphJsCPAoTX_v-HV0gyes9gTuzGd9zAXi2RYYMVakPvQ73EZCD4b0Aw_z7_zIDkV06MDmE2hy7z98-310t3M_8WErLw_QtdA8RLePdl3fHqEwz4Cyl-cBryM2DT5dJfzaxbLBJz-WHmYbPLtg8-YNmK-3eL5eXQWP7U_8KWdlBtwBtn7F42aRswtw21YAn4Bx-t5VfT5Gp5Px56P3RdeKofjG4SmCkaDtlnKnShVKARbeVtZ7Vyvj4byrpKptLL1zTFhlIgMZ8NSbSIwwPFL2BO016yY8RbhmpauNUV5KEAdhDCPBemZcjDwaT0Zof8cI3enTVlMBYQ8TEA2NUD1gjt60qBw64WQP3zTLRcbLBheVKAmUX1o2DklylKM7aKWFXl3qbdCbP-5MtbHC104JzVK0xJUz2qhAdKhgI6riFrY5QjQzvF-7hYOmOnFa95zWh9PjcT969i9Er9Ct2buJ_ng8_fAc3UnTKXONkn20BwISXqCb7upiuT1_mRXhF383DM8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+of+an+Ultrathin+Oxide+on+Pt3Sn%28111%29+Solved+by+Machine+Learning+Enhanced+Global+Optimization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Merte%2C+Lindsay+R.&rft.au=Bisbo%2C+Malthe+Kj%C3%A6r&rft.au=Sokolovi%C4%87%2C+Igor&rft.au=Setv%C3%ADn%2C+Martin&rft.date=2022-06-20&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=25&rft_id=info:doi/10.1002%2Fanie.202204244&rft_id=info%3Apmid%2F35384213&rft.externalDocID=PMC9320988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon