Conditional Generative Adversarial Networks for Metal Artifact Reduction in CT Images of the Ear
We propose an approach based on a conditional generative adversarial network (cGAN) for the reduction of metal artifacts (RMA) in computed tomography (CT) ear images of cochlear implants (CIs) recipients. Our training set contains paired pre-implantation and post-implantation CTs of 90 ears. At the...
Uložené v:
| Vydané v: | Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention Ročník 11070; s. 3 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
01.01.2018
|
| Predmet: | |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!