eDoctor: machine learning and the future of medicine
Machine learning (ML) is a burgeoning field of medicine with huge resources being applied to fuse computer science and statistics to medical problems. Proponents of ML extol its ability to deal with large, complex and disparate data, often found within medicine and feel that ML is the future for bio...
Uloženo v:
| Vydáno v: | Journal of internal medicine Ročník 284; číslo 6; s. 603 - 619 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Blackwell Publishing Ltd
01.12.2018
|
| Témata: | |
| ISSN: | 0954-6820, 1365-2796, 1365-2796 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Machine learning (ML) is a burgeoning field of medicine with huge resources being applied to fuse computer science and statistics to medical problems. Proponents of ML extol its ability to deal with large, complex and disparate data, often found within medicine and feel that ML is the future for biomedical research, personalized medicine, computer‐aided diagnosis to significantly advance global health care. However, the concepts of ML are unfamiliar to many medical professionals and there is untapped potential in the use of ML as a research tool. In this article, we provide an overview of the theory behind ML, explore the common ML algorithms used in medicine including their pitfalls and discuss the potential future of ML in medicine. |
|---|---|
| AbstractList | Machine learning (ML) is a burgeoning field of medicine with huge resources being applied to fuse computer science and statistics to medical problems. Proponents of ML extol its ability to deal with large, complex and disparate data, often found within medicine and feel that ML is the future for biomedical research, personalized medicine, computer-aided diagnosis to significantly advance global health care. However, the concepts of ML are unfamiliar to many medical professionals and there is untapped potential in the use of ML as a research tool. In this article, we provide an overview of the theory behind ML, explore the common ML algorithms used in medicine including their pitfalls and discuss the potential future of ML in medicine. Machine learning (ML) is a burgeoning field of medicine with huge resources being applied to fuse computer science and statistics to medical problems. Proponents of ML extol its ability to deal with large, complex and disparate data, often found within medicine and feel that ML is the future for biomedical research, personalized medicine, computer-aided diagnosis to significantly advance global health care. However, the concepts of ML are unfamiliar to many medical professionals and there is untapped potential in the use of ML as a research tool. In this article, we provide an overview of the theory behind ML, explore the common ML algorithms used in medicine including their pitfalls and discuss the potential future of ML in medicine.Machine learning (ML) is a burgeoning field of medicine with huge resources being applied to fuse computer science and statistics to medical problems. Proponents of ML extol its ability to deal with large, complex and disparate data, often found within medicine and feel that ML is the future for biomedical research, personalized medicine, computer-aided diagnosis to significantly advance global health care. However, the concepts of ML are unfamiliar to many medical professionals and there is untapped potential in the use of ML as a research tool. In this article, we provide an overview of the theory behind ML, explore the common ML algorithms used in medicine including their pitfalls and discuss the potential future of ML in medicine. |
| Author | Lee, M. J. Handelman, G. S. Razavi, A. H. Asadi, H. Chandra, R. V. Kok, H. K. |
| Author_xml | – sequence: 1 givenname: G. S. orcidid: 0000-0003-4275-783X surname: Handelman fullname: Handelman, G. S. email: guyhandelman@rcsi.ie organization: Royal Victoria Hospital – sequence: 2 givenname: H. K. surname: Kok fullname: Kok, H. K. organization: Northern Hospital Radiology – sequence: 3 givenname: R. V. surname: Chandra fullname: Chandra, R. V. organization: Monash University – sequence: 4 givenname: A. H. surname: Razavi fullname: Razavi, A. H. organization: BCE Corporate Security – sequence: 5 givenname: M. J. surname: Lee fullname: Lee, M. J. organization: Beaumont Hospital and Royal College of Surgeons in Ireland – sequence: 6 givenname: H. surname: Asadi fullname: Asadi, H. organization: Deakin University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30102808$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkMlOwzAQhi1URBe48AAoEhcuKeMl6ZgbKltRUS9wthzHoYkSu2QR6tuTLnBgLjPS_2k0843JwHlnCbmkMKV93RY-r6aUIWMnZER5HIVsJuMBGYGMRBgjgyEZN00BQDnEcEaGHCgwBBwRYR-8aX19F1TarHNng9Lq2uXuM9AuDdq1DbKu7Wob-CyobJqbnjknp5kuG3tx7BPy8fT4Pn8Jl6vnxfx-GRYcOQut0NwkOEu1AYikjFKOhrGEas4SA0YLjJHiTEuQPItTTRPkgmOUJBiDkXxCbg57N7X_6mzTqipvjC1L7azvGsUAkUkaMdGj1__Qwne1669TjPJICEEBeurqSHVJ_4za1Hml66369dED9AB856Xd_uUU1M602plWe9PqdbV420_8B-2zb4o |
| ContentType | Journal Article |
| Copyright | 2018 The Association for the Publication of the Journal of Internal Medicine 2018 The Association for the Publication of the Journal of Internal Medicine. Copyright © 2018 The Association for the Publication of the Journal of Internal Medicine |
| Copyright_xml | – notice: 2018 The Association for the Publication of the Journal of Internal Medicine – notice: 2018 The Association for the Publication of the Journal of Internal Medicine. – notice: Copyright © 2018 The Association for the Publication of the Journal of Internal Medicine |
| DBID | NPM 7QL C1K K9. 7X8 |
| DOI | 10.1111/joim.12822 |
| DatabaseName | PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | PubMed ProQuest Health & Medical Complete (Alumni) Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1365-2796 |
| EndPage | 619 |
| ExternalDocumentID | 30102808 JOIM12822 |
| Genre | reviewArticle Journal Article Review |
| GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29K 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AI. AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F D-I DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI TR2 UB1 V8K V9Y VH1 VVN W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZCG ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ESX IPNFZ NPM PKN WRC WUP 7QL C1K K9. O8X 7X8 |
| ID | FETCH-LOGICAL-j3832-e4a3cb87dac005995d38c22b1a32bc0ca4868187a9093f6da1b834385bb860c93 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 615 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450513100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0954-6820 1365-2796 |
| IngestDate | Wed Oct 01 14:34:31 EDT 2025 Sun Nov 30 04:54:34 EST 2025 Wed Feb 19 02:34:39 EST 2025 Tue Nov 11 03:11:59 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | supervised machine learning unsupervised machine learning medicine machine learning artificial intelligence |
| Language | English |
| License | 2018 The Association for the Publication of the Journal of Internal Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-j3832-e4a3cb87dac005995d38c22b1a32bc0ca4868187a9093f6da1b834385bb860c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-4275-783X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/joim.12822 |
| PMID | 30102808 |
| PQID | 2135444100 |
| PQPubID | 30713 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2088291524 proquest_journals_2135444100 pubmed_primary_30102808 wiley_primary_10_1111_joim_12822_JOIM12822 |
| PublicationCentury | 2000 |
| PublicationDate | December 2018 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Journal of internal medicine |
| PublicationTitleAlternate | J Intern Med |
| PublicationYear | 2018 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2017; 7 2009; 46 2009; 41 2005; 293 2017; 45 1997; 1 2011; 56 2012; 16 2013; 8 2012; 55 2016; 35 2014; 134 2009; 12 1995; 20 2015; 46 2007; 137 2000; 19 2014; 4 2000; 16 2013; 16 2013; 11 2000 2017; 38 2016; 316 2017; 35 2015; 132 2001; 19 2003; 3 2008; 26 2014; 15 2016; 353 2011; 24 2001; 16 2014; 19 2012; 24 1994; 308 2016; 49 2010; 4 1992; 5 2015; 13 2015; 15 2015; 14 2015; 5 2011; 1 2011 2010 2015; 521 2002; 35 1989; 6 2002; 8 2015; 10 1997 2006; 8 2003; 36 2008; 15 2007 2006 1994; 02 2006; 19 2006; 2 2012; 36 2007; 11 2012; 33 2012; 108 2016; 56 2016; 11 1990; 2 1950; 59 2009; 77 2011; 2011 2016; 7 2002; 26 2014; 506 2017; 14 2007; 2007 2015; 111 2004; 14 2002; 21 2015; 65 2017; 12 2013; 74 2015; 2015 2005; 129 2016; 20 2016; 375 2016 2015 2008; 44 2017; 18 2014 2017; 542 2016; 9 1994; 6 2017; 547 |
| References_xml | – year: 2011 – volume: 2011 start-page: 8 year: 2011 article-title: Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance publication-title: J Biomed Biotechnol – volume: 18 start-page: 570 year: 2017 end-page: 84 article-title: Deep learning in medical imaging: general overview publication-title: Korean J Radiol – volume: 12 start-page: e0174944 year: 2017 article-title: Can machine‐learning improve cardiovascular risk prediction using routine clinical data? publication-title: PLoS ONE – volume: 20 start-page: 273 year: 1995 end-page: 97 article-title: Support‐vector networks publication-title: Mach Learn – volume: 8 start-page: e61318 year: 2013 article-title: Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties publication-title: PLoS ONE – volume: 547 start-page: 259 year: 2017 article-title: The DeepMind debacle demands dialogue on data publication-title: Nature – volume: 542 start-page: 115 year: 2017 end-page: 8 article-title: Dermatologist‐level classification of skin cancer with deep neural networks publication-title: Nature – volume: 19 start-page: 411 year: 2006 end-page: 34 article-title: Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra publication-title: NMR Biomed – volume: 4 start-page: 40 year: 2010 end-page: 79 article-title: A survey of cross‐validation procedures for model selection publication-title: Statist Surv – volume: 19 start-page: 1138 year: 2014 end-page: 48 article-title: Classifying patients by their characteristics and clinical presentations; the use of latent class analysis publication-title: Respirology – volume: 12 start-page: 584 year: 2009 end-page: 91 article-title: Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts publication-title: Med Image Comput Comput‐Assist Interv – volume: 15 start-page: 6 year: 2014 end-page: 14 article-title: Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning publication-title: IEEE Intell Inform Bull – volume: 19 start-page: 177 year: 2001 end-page: 83 article-title: Cellular neural networks and computational intelligence in medical image processing publication-title: Image Vis Comput – volume: 15 start-page: 535 year: 2008 end-page: 55 article-title: Computer‐aided diagnosis of lung cancer and pulmonary embolism in computed tomography‐a review publication-title: Acad Radiol – year: 2014 – volume: 11 start-page: 47 year: 2013 end-page: 58 article-title: Artificial neural networks in medical diagnosis publication-title: J Appl Biomed – volume: 8 start-page: 537 year: 2006 end-page: 65 article-title: Machine learning for detection and diagnosis of disease publication-title: Annu Rev Biomed Eng – volume: 16 start-page: 441 year: 2013 article-title: Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment publication-title: Curr Cardiol Rep – volume: 02 start-page: 247 year: 1994 end-page: 81 article-title: A neural network primer publication-title: J Biol Syst – start-page: 528 year: 2010 – volume: 36 start-page: 61 year: 2012 end-page: 72 article-title: A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases publication-title: J Med Syst – volume: 6 start-page: 270 year: 1994 end-page: 84 article-title: A probabilistic resource allocating network for novelty detection publication-title: Neural Comput – volume: 35 start-page: 2279 year: 2002 end-page: 301 article-title: Image processing with neural networks—a review publication-title: Pattern Recogn – volume: 5 start-page: 10312 year: 2015 article-title: Application of high‐dimensional feature selection: evaluation for genomic prediction in man publication-title: Sci Rep – volume: 35 start-page: 3 year: 2016 end-page: 14 article-title: Deep learning in drug discovery publication-title: Mol Inform – volume: 7 start-page: 40321 year: 2017 article-title: Drug response prediction as a link prediction problem publication-title: Sci Rep – volume: 10 start-page: 38 year: 2015 end-page: 43 article-title: Health informatics via machine learning for the clinical management of patients publication-title: Yearbook Med Inform – volume: 8 start-page: 68 year: 2002 end-page: 74 article-title: Diffuse large B‐cell lymphoma outcome prediction by gene‐expression profiling and supervised machine learning publication-title: Nat Med – year: 1997 – volume: 77 start-page: 482 year: 2009 article-title: The Elements of statistical learning: data mining, inference, and prediction, second edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman publication-title: Int Stat Rev – volume: 108 start-page: 311 year: 2012 end-page: 5 article-title: Using latent class growth analysis to identify childhood wheeze phenotypes in an urban birth cohort publication-title: Ann Allergy Asthma Immunol – volume: 33 start-page: 33 year: 2012 article-title: Machine learning for personalized medicine: predicting primary myocardial infarction from electronic health records publication-title: AI Magazine – volume: 16 start-page: 199 year: 2001 end-page: 231 article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author) publication-title: Statist Sci – volume: 19 start-page: 541 year: 2000 end-page: 61 article-title: On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology publication-title: Stat Med – volume: 3 start-page: 1157 year: 2003 end-page: 82 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – year: 2015 – volume: 134 start-page: 130 year: 2014 end-page: 9 article-title: The first Smartphone application for microsurgery monitoring: SilpaRamanitor publication-title: Plast Reconstr Surg – volume: 2015 start-page: 1306 year: 2015 end-page: 15 article-title: Machine learning for treatment assignment: improving individualized risk attribution publication-title: AMIA Annu Symp Proc – volume: 26 start-page: 445 year: 2002 end-page: 63 article-title: Decision trees: an overview and their use in medicine publication-title: J Med Syst – volume: 13 start-page: 8 year: 2015 end-page: 17 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput Struct Biotechnol J – volume: 2007 start-page: 319 year: 2007 end-page: 23 article-title: Evidence‐based anomaly detection in clinical domains publication-title: AMIA Annu Symp Proc – volume: 2 start-page: 1 year: 1990 end-page: 3 article-title: In dubio pro aegro publication-title: Artif Intell Med – volume: 308 start-page: 1552 year: 1994 article-title: Statistics notes: diagnostic tests 1: sensitivity and specificity publication-title: BMJ – volume: 132 start-page: 1920 year: 2015 end-page: 30 article-title: Machine learning in medicine publication-title: Circulation – volume: 65 start-page: 61 year: 2015 end-page: 73 article-title: Thirty years of artificial intelligence in medicine (AIME) conferences: A review of research themes publication-title: Artif Intell Med – volume: 16 start-page: 933 year: 2012 end-page: 51 article-title: Machine learning and radiology publication-title: Med Image Anal – volume: 129 start-page: 1832 year: 2005 end-page: 44 article-title: Computed tomographic virtual colonoscopy computer‐aided polyp detection in a screening population publication-title: Gastroenterology – volume: 375 start-page: 1216 year: 2016 end-page: 9 article-title: Predicting the future — big data, machine learning, and clinical medicine publication-title: N Engl J Med – volume: 1 start-page: 55 year: 1997 end-page: 77 article-title: On Bias, Variance, 0/1—Loss, and the curse‐of‐dimensionality publication-title: Data Min Knowl Disc – volume: 10 start-page: e0118432 year: 2015 article-title: The precision‐recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets publication-title: PLoS ONE – volume: 45 start-page: 1607 year: 2017 end-page: 15 article-title: Identifying distinct subgroups of ICU patients: a machine learning approach publication-title: Crit Care Med – volume: 41 start-page: 1 year: 2009 end-page: 58 article-title: Anomaly detection: A survey publication-title: ACM Comput Surv – volume: 11 start-page: 58 year: 2007 end-page: 69 article-title: A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback publication-title: IEEE Trans Inf Technol Biomed – volume: 16 start-page: 906 year: 2000 end-page: 14 article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data publication-title: Bioinformatics – year: 2007 – volume: 6 start-page: 12 year: 1989 end-page: 9 article-title: Advanced cardiac life support (ACLS) algorithms. A powerful decision tree for management of cardiac arrest victims publication-title: Can Crit Care Nurs J – volume: 38 start-page: 1805 year: 2017 end-page: 14 article-title: Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges publication-title: Eur Heart J – volume: 35 start-page: 352 year: 2002 end-page: 9 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J Biomed Inform – volume: 14 start-page: 387 year: 2015 end-page: 404 article-title: Predicting drug metabolism: experiment and/or computation? publication-title: Nat Rev Drug Discov – year: 2000 – volume: 14 start-page: 551 year: 2004 end-page: 9 article-title: Comparison of logistic regression and neural network analysis applied to predicting living setting after hip fracture publication-title: Ann Epidemiol – volume: 21 start-page: 1552 year: 2002 end-page: 63 article-title: A support vector machine approach for detection of microcalcifications publication-title: IEEE Trans Med Imaging – volume: 56 start-page: 301 year: 2016 end-page: 18 article-title: Doctor AI: predicting clinical events via recurrent neural networks publication-title: JMLR Workshop Conf Proc – volume: 55 start-page: 78 year: 2012 end-page: 87 article-title: A few useful things to know about machine learning publication-title: Commun ACM – volume: 26 start-page: 303 year: 2008 end-page: 4 article-title: What is principal component analysis? publication-title: Nat Biotech – year: 2016 – volume: 35 start-page: 530 year: 2017 end-page: 43 article-title: When machine vision meets histology: A comparative evaluation of model architecture for classification of histology sections publication-title: Med Image Anal – volume: 15 start-page: 38 year: 2015 article-title: Distinguishing asthma phenotypes using machine learning approaches publication-title: Curr Allergy Asthma Rep – volume: 111 start-page: 19.13.1‐4 year: 2015 article-title: Using google reverse image search to decipher biological images publication-title: Curr Protoc Mol Biol – volume: 137 start-page: 44 year: 2007 end-page: 9 article-title: Statistical errors in medical research–a review of common pitfalls publication-title: Swiss Med Wkly – volume: 46 start-page: 5 year: 2009 end-page: 17 article-title: The coming of age of artificial intelligence in medicine publication-title: Artif Intell Med – volume: 4 start-page: e004007 year: 2014 article-title: Machine‐learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry publication-title: BMJ Open – volume: 59 start-page: 433 year: 1950 end-page: 60 article-title: Computing machinery and intelligence publication-title: Mind – volume: 49 start-page: 141 year: 2016 end-page: 8 article-title: Ensemble fuzzy models in personalized medicine: Application to vasopressors administration publication-title: Eng Appl Artif Intell – volume: 506 start-page: 150 year: 2014 end-page: 2 article-title: Scientific method: statistical errors publication-title: Nature – volume: 14 start-page: 1476 year: 2017 end-page: 80 article-title: Artificial intelligence: threat or boon to radiologists? publication-title: J Am College Radiol – volume: 20 start-page: 402 year: 2016 end-page: 10 article-title: Unsupervised learning technique identifies bronchiectasis phenotypes with distinct clinical characteristics publication-title: Int J Tuberc Lung Dis – volume: 24 start-page: 118 year: 2012 end-page: 20 article-title: Latent variable modeling publication-title: Shanghai Arch Psychiat – volume: 9 start-page: 11 year: 2016 article-title: Cancer survival analysis using semi‐supervised learning method based on Cox and AFT models with L1/2 regularization publication-title: BMC Med Genomics – volume: 74 start-page: 1223 year: 2013 end-page: 30 article-title: A principal component analysis of coagulation after trauma publication-title: J Trauma Acute Care Surgery – volume: 521 start-page: 436 year: 2015 end-page: 44 article-title: Deep learning publication-title: Nature – volume: 11 start-page: 553 year: 2016 end-page: 68 article-title: Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions publication-title: Int J Comput Assist Radiol Surg – volume: 56 start-page: 387 year: 2011 end-page: 99 article-title: Introduction to machine learning for brain imaging publication-title: NeuroImage – year: 2006 – volume: 24 start-page: 208 year: 2011 end-page: 22 article-title: Content‐based image retrieval in radiology: current status and future directions publication-title: J Digit Imaging – volume: 2 start-page: 59 year: 2006 end-page: 77 article-title: Applications of machine learning in cancer prediction and prognosis publication-title: Cancer Inform – volume: 44 start-page: 798 year: 2008 end-page: 807 article-title: Computer aids and human second reading as interventions in screening mammography: Two systematic reviews to compare effects on cancer detection and recall rate publication-title: Eur J Cancer – volume: 293 start-page: 1223 year: 2005 end-page: 38 article-title: Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review publication-title: JAMA – volume: 36 start-page: 2967 year: 2003 end-page: 91 article-title: Computer‐aided detection and classification of microcalcifications in mammograms: a survey publication-title: Pattern Recogn – volume: 7 start-page: 12474 year: 2016 article-title: Predicting non‐small cell lung cancer prognosis by fully automated microscopic pathology image features publication-title: Nat Commun – volume: 5 start-page: 241 year: 1992 end-page: 59 article-title: Stacked generalization publication-title: Neural Networks – volume: 1 start-page: 138 year: 2011 end-page: 48 article-title: IMPST: a new interactive self‐training approach to segmentation suspicious lesions in breast MRI publication-title: J Med Signals Sensors – volume: 316 start-page: 2402 year: 2016 end-page: 10 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA – volume: 46 start-page: 457 year: 2015 end-page: 67 article-title: Latent variable mixture modeling in psychiatric research – a review and application publication-title: Psychol Med – volume: 353 start-page: i2573 year: 2016 article-title: NHS data sharing deal with Google prompts concern publication-title: BMJ |
| SSID | ssj0013060 |
| Score | 2.6992652 |
| SecondaryResourceType | review_article |
| Snippet | Machine learning (ML) is a burgeoning field of medicine with huge resources being applied to fuse computer science and statistics to medical problems.... |
| SourceID | proquest pubmed wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 603 |
| SubjectTerms | Artificial intelligence Global health Health care Learning algorithms Machine learning Medical personnel Medicine Precision medicine supervised machine learning unsupervised machine learning |
| Title | eDoctor: machine learning and the future of medicine |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjoim.12822 https://www.ncbi.nlm.nih.gov/pubmed/30102808 https://www.proquest.com/docview/2135444100 https://www.proquest.com/docview/2088291524 |
| Volume | 284 |
| WOSCitedRecordID | wos000450513100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1365-2796 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013060 issn: 0954-6820 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2796 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013060 issn: 0954-6820 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji90d1jgg-CZG0SdtUfBF1OHFTxOHeStKmMmGt7MO_3yTtqoIv4lMDSSFc73K_611-B3CizJfOlMRCgwXMfJJhrtIUuzRMJPGJjILUNpsIez0-GESPC3AxvwtT8kPUP9yMZdjz2hi4kJPvRl4MR2euqYLUB7DLrFW-dHpfKQRirwhrCMFwoP1cxU1qy3jqV3_DlT9hqvUz7fX_7XAD1ip8iS5LhdiEBZVvwUq3yqBvA1Pareg4-xyNbBmlQlXfiFck8hRpOIhKmhFUZGieeN-Bfvvm-eoWV50T8JuOOD2smKCJ5GEqEkvA4qeUJ54nXUE9mRDDZB5oTx2KiEQ0C1LhSk4Z5b6UPCBJRHehkRe52gdEpO8lnor0U7CQhiKQme-riBJFPcUDB5pzCcaV-k9iz6U-00CLEAeO62mtuCYbIXJVzPQaA-4jDR-YA3ul5OP3kmEjpobpjhPuwKkVcD1RhyxatLEVbXz30Ona0cFfFh_CqoY-vCxMaUJjOp6pI1hOPqbDybgFi-GAt2Dp-qndv29ZvfoELirLeQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB10FfXi90d11QiehErapG3qTdTF1d1VRGFvJWlTUbAVd_X3O0m7VcGLeGohKZTXmc5LZvIG4FCbL51r5UokCy4PaO4KnWWux6JU0YCqOMxss4loMBDDYXxb1-aYszCVPkSz4WY8w_6vjYObDenvXl4-vRx7pgxyGmY42lHQgpnzu85D7yuNQO0xYaQR3A0x1tX6pLaUp3n6N275k6raWNNZ-udbLsNiTTLJaWUVKzCli1WY69dp9DXgGmMLLrZPyIutpdSkbh7xSGSREeSEpNIaIWVOJtn3dXjoXNyfXbp1-wT3GZedvqu5ZKkSUSZTq8ISZEykvq88yXyVUiNnHmK4jmRMY5aHmfSUYBxhVEqENI3ZBrSKstBbQKgK_NTXMV4lj1gkQ5UHgY4Z1czXInSgPYEwqX1glPgeCziyLUodOGiG0XpNSkIWunzHOYbhx8ghuAObFfTJayWzkTAjdyeocODIItwMNOsWhDax0CZXN92-vdv-y-R9mL-87_eSXndwvQMLyIVEVanShtb47V3vwmz6MX4ave3VhvUJIBTOPQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IV58P-ozgiehkjZJm3gT18XV3XURBW8laVNZYVvRXX-_SdqtCl7EUwtJoExmMt90Jt8AnGi707lWvjRgwacM5z7XWeYHJE4VZliJKHPNJuJ-nz89iUFdm2PvwlT8EM0PN2sZ7ry2Bq5fs_y7lZfD0VlgyyBnYZ4yERm7nG_dtx-7X2kE7K4JGxhB_cj4upqf1JXyNKt_w5Y_oarzNe2Vf37lKizXIBNdVFqxBjO6WIfFXp1G3wCqjW8xwfY5GrlaSo3q5hHPSBYZMpgQVVwjqMzRNPu-CY_tq4fLa79un-C_mLAz9DWVJFU8zmTqWFhYRngahiqQJFQptnTmkXHXsRRYkDzKZKA4oYQzpXiEU0G2YK4oC70DCCsWpqEW5ilpTGIZqZwxLQjWJNQ88mB_KsKktoH3JAwIowZtYezBcTNstNemJGShy4mZYxG-MBiCerBdiT55rWg2EmLp7jjmHpw6CTcDTdxiRJs40SY3d52ee9v9y-QjWBy02km307_dgyUDhXhVqLIPc-O3iT6AhfRjPHx_O6z16hPzK824 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=eDoctor%3A+machine+learning+and+the+future+of+medicine&rft.jtitle=Journal+of+internal+medicine&rft.au=Handelman%2C+G+S&rft.au=Kok%2C+H+K&rft.au=Chandra%2C+R+V&rft.au=Razavi%2C+A+H&rft.date=2018-12-01&rft.issn=1365-2796&rft.eissn=1365-2796&rft.volume=284&rft.issue=6&rft.spage=603&rft_id=info:doi/10.1111%2Fjoim.12822&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-6820&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-6820&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-6820&client=summon |