Advances and Challenges for the Electrochemical Reduction of CO2 to CO: From Fundamentals to Industrialization

The electrochemical carbon dioxide reduction reaction (CO2RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Angewandte Chemie International Edition Ročník 60; číslo 38; s. 20627 - 20648
Hlavní autoři: Jin, Song, Hao, Zhimeng, Zhang, Kai, Yan, Zhenhua, Chen, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Wiley Subscription Services, Inc 13.09.2021
Vydání:International ed. in English
Témata:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The electrochemical carbon dioxide reduction reaction (CO2RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate reactions because of its high technological and economic feasibility. Integrating catalyst and electrolyte design with an understanding of the catalytic mechanism will yield scientific insights and promote this technology towards industrial implementation. Herein, we give an overview of recent advances and challenges for the selective conversion of CO2 into CO. Multidimensional catalyst and electrolyte engineering for the CO2RR are also summarized. Furthermore, recent studies on the large‐scale production of CO are highlighted to facilitate industrialization of the electrochemical reduction of CO2. To conclude, the remaining technological challenges and future directions for the industrial application of the CO2RR to generate CO are highlighted. The selective electrochemical reduction of CO2 to CO provides a promising approach to realize a sustainable, carbon‐neutral economy. This Review gives a comprehensive overview focusing on catalyst and electrolyte design, and their integration with electrolyzer technology towards industrial implementation. The current challenges in the commercial use of CO2 electrolysis to generate CO are also presented to enable future developments.
AbstractList The electrochemical carbon dioxide reduction reaction (CO2 RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2 RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate reactions because of its high technological and economic feasibility. Integrating catalyst and electrolyte design with an understanding of the catalytic mechanism will yield scientific insights and promote this technology towards industrial implementation. Herein, we give an overview of recent advances and challenges for the selective conversion of CO2 into CO. Multidimensional catalyst and electrolyte engineering for the CO2 RR are also summarized. Furthermore, recent studies on the large-scale production of CO are highlighted to facilitate industrialization of the electrochemical reduction of CO2 . To conclude, the remaining technological challenges and future directions for the industrial application of the CO2 RR to generate CO are highlighted.The electrochemical carbon dioxide reduction reaction (CO2 RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2 RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate reactions because of its high technological and economic feasibility. Integrating catalyst and electrolyte design with an understanding of the catalytic mechanism will yield scientific insights and promote this technology towards industrial implementation. Herein, we give an overview of recent advances and challenges for the selective conversion of CO2 into CO. Multidimensional catalyst and electrolyte engineering for the CO2 RR are also summarized. Furthermore, recent studies on the large-scale production of CO are highlighted to facilitate industrialization of the electrochemical reduction of CO2 . To conclude, the remaining technological challenges and future directions for the industrial application of the CO2 RR to generate CO are highlighted.
The electrochemical carbon dioxide reduction reaction (CO2RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate reactions because of its high technological and economic feasibility. Integrating catalyst and electrolyte design with an understanding of the catalytic mechanism will yield scientific insights and promote this technology towards industrial implementation. Herein, we give an overview of recent advances and challenges for the selective conversion of CO2 into CO. Multidimensional catalyst and electrolyte engineering for the CO2RR are also summarized. Furthermore, recent studies on the large‐scale production of CO are highlighted to facilitate industrialization of the electrochemical reduction of CO2. To conclude, the remaining technological challenges and future directions for the industrial application of the CO2RR to generate CO are highlighted. The selective electrochemical reduction of CO2 to CO provides a promising approach to realize a sustainable, carbon‐neutral economy. This Review gives a comprehensive overview focusing on catalyst and electrolyte design, and their integration with electrolyzer technology towards industrial implementation. The current challenges in the commercial use of CO2 electrolysis to generate CO are also presented to enable future developments.
The electrochemical carbon dioxide reduction reaction (CO2RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate reactions because of its high technological and economic feasibility. Integrating catalyst and electrolyte design with an understanding of the catalytic mechanism will yield scientific insights and promote this technology towards industrial implementation. Herein, we give an overview of recent advances and challenges for the selective conversion of CO2 into CO. Multidimensional catalyst and electrolyte engineering for the CO2RR are also summarized. Furthermore, recent studies on the large‐scale production of CO are highlighted to facilitate industrialization of the electrochemical reduction of CO2. To conclude, the remaining technological challenges and future directions for the industrial application of the CO2RR to generate CO are highlighted.
Author Hao, Zhimeng
Jin, Song
Chen, Jun
Zhang, Kai
Yan, Zhenhua
Author_xml – sequence: 1
  givenname: Song
  surname: Jin
  fullname: Jin, Song
  organization: Nankai University
– sequence: 2
  givenname: Zhimeng
  surname: Hao
  fullname: Hao, Zhimeng
  organization: Nankai University
– sequence: 3
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  organization: Nankai University
– sequence: 4
  givenname: Zhenhua
  surname: Yan
  fullname: Yan, Zhenhua
  email: yzh@nankai.edu.cn
  organization: Nankai University
– sequence: 5
  givenname: Jun
  orcidid: 0000-0001-8604-9689
  surname: Chen
  fullname: Chen, Jun
  email: chenabc@nankai.edu.cn
  organization: Nankai University
BookMark eNpdkMFLwzAUxoNMcJtePQe8eOlsmjRNvY2x6WA4ED2HkLy6jjSZaavMv96UyQ7yDu99vN97fHwTNHLeAUK3JJ2RNM0elKthlqUZSYkg4gKNSZ6RhBYFHcWZUZoUIidXaNK2-8gLkfIxcnPzpZyGFitn8GKnrAX3EWXlA-52gJcWdBe83kFTa2XxK5hed7V32Fd4sc1w52N7xKvgG7zqnVENuE7ZdlisnenbLtTK1j9qOLpGl1Xcwc1fn6L31fJt8Zxstk_rxXyT7CnNRKKja8MN1bTilGpeGAOkYiA0A05IlRZGmyJnJTBmeJnTUpuKKMJKASI3JZ2i-9PfQ_CfPbSdbOpWg7XKge9bmeWE5WVWcB7Ru3_o3vfBRXeR4iVlVMSaovJEfdcWjvIQ6kaFoySpHLKXQ_bynL2cv6yXZ0V_AT51fAg
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202101818
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 20648
ExternalDocumentID ANIE202101818
Genre reviewArticle
GrantInformation_xml – fundername: Young Elite Scientists Sponsorship Program by CAST
  funderid: 2019QNRC001
– fundername: 111 Project from the Ministry of Education of China
  funderid: B12015
– fundername: National Programs for Nano-Key Project
  funderid: 2017YFA0206700 and 2018YFB1502101
– fundername: National Natural Science Foundation of China
  funderid: 51901104, 52001171 and 21835004
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-j3328-c377d6d3c3f633c67dde1f4e8c4e611f07dcd7549e44d69539cdf1a1498e85d93
IEDL.DBID DRFUL
ISICitedReferencesCount 929
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647045000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Sun Nov 09 12:44:20 EST 2025
Tue Oct 07 07:10:21 EDT 2025
Wed Jan 22 16:28:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j3328-c377d6d3c3f633c67dde1f4e8c4e611f07dcd7549e44d69539cdf1a1498e85d93
Notes These authors contributed equally to this work.
Dedicated to the 100th anniversary of Chemistry at Nankai University
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8604-9689
PQID 2569343838
PQPubID 946352
PageCount 22
ParticipantIDs proquest_miscellaneous_2514592766
proquest_journals_2569343838
wiley_primary_10_1002_anie_202101818_ANIE202101818
PublicationCentury 2000
PublicationDate September 13, 2021
PublicationDateYYYYMMDD 2021-09-13
PublicationDate_xml – month: 09
  year: 2021
  text: September 13, 2021
  day: 13
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 484
2007; 107
2013; 4
2010; 107
2019; 11
2019; 12
2019; 14
1974
2019; 19
2020; 13
2020; 10
2018; 45
2014; 136
2016; 260
2018; 8
2018; 3
2018; 2
2018; 5
2012; 134
2018; 4
2015; 137
2019; 26
2014; 14
1933; 164A
2018; 30
2016; 312
2019; 7
2019; 9
2018; 28
2019; 4
2019; 3
2019; 31
2020; 142
2019; 2
2015; 55
2014; 46
1999; 103
2017 2017; 56 129
2021; 50
2018; 23
2016; 16
1996; 404
2016; 163
2017; 139
1995; 390
2018; 24
2016; 6
2016; 7
2018; 17
2020; 30
1991; 64
2018; 114
1967; 39
2021 2021; 60 133
2015; 119
2020; 22
2009; 460
2014; 30
2016; 28
2018; 11
2007; 318
2014; 141
2016; 9
2017; 5
1989; 85
2017; 7
2017; 8
2017; 1
2017; 3
2020; 63
2017; 46
2020 2020; 59 132
2016; 189
2015; 349
2007; 32
2013; 160
2017; 9
2014; 730
2017; 358
2019; 365
2013 2013; 52 125
2001; 105
2012; 51
2020; 8
2002; 47
2020; 5
2014; 5
2019; 60
2014; 4
2013; 17
2018 2018; 57 130
2016; 354
2016; 353
2015 2015; 54 127
2017; 240
1994; 39
1977; 78
2008; 155
2017; 245
2014; 50
2012; 338
2006; 364
2014; 54
2011; 334
2021; 6
2015; 14
2015; 6
2015; 5
2021; 4
2018; 140
2020; 581
1973; 77
2011; 40
2017; 29
2003
2011; 36
2015; 9
2016; 120
2019 2019; 58 131
2021; 14
2021; 13
1989; 93
2011; 108
2016 2016; 55 128
2021; 12
2021; 11
2000; 147
2016; 537
2021
2020
2017; 11
2021; 17
2017; 10
1958; 62
2020; 117
2013; 135
2016; 534
2016; 138
2018; 54
2009; 148
2018; 57
References_xml – volume: 3
  start-page: 560
  year: 2017
  end-page: 587
  publication-title: Chem
– volume: 11
  start-page: 222
  year: 2019
  end-page: 228
  publication-title: Nat. Chem.
– volume: 5
  start-page: 3884
  year: 2014
  end-page: 3889
  publication-title: J. Phys. Chem. Lett.
– volume: 55
  start-page: 1
  year: 2015
  end-page: 5
  publication-title: Electrochem. Commun.
– volume: 120
  start-page: 23989
  year: 2016
  end-page: 24001
  publication-title: J. Phys. Chem. C
– volume: 120
  start-page: 24476
  year: 2016
  end-page: 24481
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 198
  year: 2019
  end-page: 210
  publication-title: Nat. Catal.
– volume: 59 132
  start-page: 1674 1691
  year: 2020 2020
  end-page: 1681 1698
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57
  start-page: 2165
  year: 2018
  end-page: 2177
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  start-page: 779
  year: 2017
  end-page: 785
  publication-title: ACS Catal.
– volume: 2
  start-page: 0105
  year: 2018
  publication-title: Nat. Rev. Chem.
– volume: 139
  start-page: 8078
  year: 2017
  end-page: 8081
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 374
  year: 2020
  end-page: 403
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 27377
  year: 2017
  end-page: 27382
  publication-title: ACS Appl. Mater. Interfaces
– volume: 390
  start-page: 77
  year: 1995
  end-page: 82
  publication-title: J. Electroanal. Chem.
– volume: 365
  start-page: 367
  year: 2019
  end-page: 369
  publication-title: Science
– volume: 148
  start-page: 191
  year: 2009
  end-page: 205
  publication-title: Catal. Today
– volume: 3
  start-page: 1703
  year: 2019
  end-page: 1718
  publication-title: Joule
– volume: 39
  start-page: 332
  year: 1967
  end-page: 338
  publication-title: Anal. Chem.
– volume: 4
  start-page: 317
  year: 2019
  end-page: 324
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 1268
  year: 2016
  end-page: 1275
  publication-title: Chem. Sci.
– start-page: 158
  year: 1974
  end-page: 159
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 60
  start-page: 43
  year: 2019
  end-page: 51
  publication-title: Nano Energy
– volume: 142
  start-page: 21513
  year: 2020
  end-page: 21521
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 765
  year: 2021
  end-page: 780
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 6978
  year: 2014
  end-page: 6986
  publication-title: J. Am. Chem. Soc.
– volume: 107
  start-page: 20678
  year: 2010
  end-page: 20685
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 213
  year: 2003
  end-page: 218
– volume: 4
  start-page: 466
  year: 2019
  end-page: 474
  publication-title: Nat. Energy
– volume: 55 128
  start-page: 9748 9900
  year: 2016 2016
  end-page: 9752 9904
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 16833
  year: 2013
  end-page: 16836
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 16473
  year: 2014
  end-page: 16476
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 944
  year: 2017
  publication-title: Nat. Commun.
– volume: 114
  start-page: 109
  year: 2018
  end-page: 113
  publication-title: Catal. Commun.
– volume: 164A
  start-page: 121
  year: 1933
  publication-title: Z. Phys. Chem.
– volume: 260
  start-page: 8
  year: 2016
  end-page: 13
  publication-title: Catal. Today
– volume: 349
  start-page: 1208
  year: 2015
  end-page: 1213
  publication-title: Science
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 318
  start-page: 1461
  year: 2007
  end-page: 1464
  publication-title: Science
– volume: 117
  start-page: 5680
  year: 2020
  end-page: 5685
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 1512
  year: 2020
  end-page: 1518
  publication-title: ACS Energy Lett.
– volume: 64
  start-page: 123
  year: 1991
  end-page: 127
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 5
  start-page: 703
  year: 2015
  end-page: 707
  publication-title: ACS Catal.
– volume: 45
  start-page: 456
  year: 2018
  end-page: 462
  publication-title: Nano Energy
– volume: 30
  start-page: 6302
  year: 2014
  end-page: 6308
  publication-title: Langmuir
– volume: 119
  start-page: 55
  year: 2015
  end-page: 61
  publication-title: J. Phys. Chem. C
– year: 2021
  publication-title: Adv. Sci.
– volume: 50
  start-page: 3878
  year: 2014
  end-page: 3881
  publication-title: Chem. Commun.
– volume: 23
  start-page: 152
  year: 2018
  end-page: 158
  publication-title: J. CO2 Util.
– volume: 54 127
  start-page: 13701 13905
  year: 2015 2015
  end-page: 13705 13909
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 713
  year: 2021
  end-page: 727
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 2455
  year: 2019
  end-page: 2462
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 4470
  year: 2014
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1192
  year: 2015
  end-page: 1193
  publication-title: Nat. Mater.
– volume: 57 130
  start-page: 12303 12483
  year: 2018 2018
  end-page: 12307 12487
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 21885 22069
  year: 2020 2020
  end-page: 21889 22073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 10121
  year: 2018
  end-page: 10125
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 466
  year: 2016
  end-page: 470
  publication-title: Nano Lett.
– volume: 46
  start-page: 103
  year: 2014
  end-page: 106
  publication-title: Electrochem. Commun.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 240
  start-page: 114
  year: 2017
  end-page: 121
  publication-title: Electrochim. Acta
– volume: 58 131
  start-page: 6595 6667
  year: 2019 2019
  end-page: 6599 6671
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52 125
  start-page: 7372 7516
  year: 2013 2013
  end-page: 7408 7557
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 39
  start-page: 1833
  year: 1994
  end-page: 1839
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 1311
  year: 2014
  end-page: 1324
  publication-title: J. Chem. Inf. Model.
– volume: 14
  start-page: 1381
  year: 2014
  end-page: 1387
  publication-title: Nano Lett.
– volume: 5
  start-page: 4293
  year: 2015
  end-page: 4299
  publication-title: ACS Catal.
– volume: 12
  start-page: 4201
  year: 2021
  end-page: 4215
  publication-title: Chem. Sci.
– volume: 36
  start-page: 4134
  year: 2011
  end-page: 4142
  publication-title: Int. J. Hydrogen Energy
– volume: 58 131
  start-page: 6972 7046
  year: 2019 2019
  end-page: 6976 7050
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 40
  start-page: 3703
  year: 2011
  end-page: 3727
  publication-title: Chem. Soc. Rev.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  publication-title: Chem. Soc. Rev.
– volume: 141
  start-page: 216
  year: 2014
  end-page: 225
  publication-title: Electrochim. Acta
– volume: 62
  start-page: 1049
  year: 1958
  end-page: 1054
  publication-title: J. Phys. Chem.
– volume: 17
  start-page: 1843
  year: 2013
  end-page: 1849
  publication-title: J. Solid State Electrochem.
– volume: 139
  start-page: 8329
  year: 2017
  end-page: 8336
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 3399
  year: 2017
  end-page: 3405
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 202
  year: 2016
  end-page: 209
  publication-title: ACS Catal.
– volume: 105
  start-page: 4967
  year: 2001
  end-page: 4972
  publication-title: J. Phys. Chem. B
– volume: 136
  start-page: 16132
  year: 2014
  end-page: 16135
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 19651
  year: 2019
  end-page: 19656
  publication-title: J. Mater. Chem. A
– volume: 312
  start-page: 192
  year: 2016
  end-page: 198
  publication-title: J. Power Sources
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 358
  start-page: 1187
  year: 2017
  end-page: 1192
  publication-title: Science
– volume: 85
  start-page: 2309
  year: 1989
  end-page: 2326
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 160
  start-page: F69
  year: 2013
  end-page: F74
  publication-title: J. Electrochem. Soc.
– volume: 55 128
  start-page: 15282 15508
  year: 2016 2016
  end-page: 15286 15512
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 147
  start-page: 4164
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 63
  start-page: 1727
  year: 2020
  end-page: 1733
  publication-title: Sci. China Chem.
– volume: 78
  start-page: 403
  year: 1977
  end-page: 407
  publication-title: J. Electroanal. Chem. Interfaces Electrochem.
– volume: 22
  start-page: 1181
  year: 2020
  end-page: 1186
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 15458
  year: 2020
  end-page: 15478
  publication-title: J. Mater. Chem. A
– volume: 730
  start-page: 48
  year: 2014
  end-page: 58
  publication-title: J. Electroanal. Chem.
– volume: 120
  start-page: 26442
  year: 2016
  end-page: 26447
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 732
  year: 2019
  end-page: 745
  publication-title: Nat. Energy
– volume: 26
  start-page: 112
  year: 2019
  end-page: 121
  publication-title: Curr. Opin. Chem. Eng.
– volume: 8
  start-page: 4452
  year: 2018
  end-page: 4458
  publication-title: ACS Catal.
– volume: 56 129
  start-page: 9121 9249
  year: 2017 2017
  end-page: 9125 9253
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 7224
  year: 2016
  end-page: 7228
  publication-title: Nano Lett.
– volume: 50
  start-page: 4993
  year: 2021
  end-page: 5061
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 354
  start-page: 182
  year: 2016
  end-page: 183
  publication-title: Science
– volume: 537
  start-page: 382
  year: 2016
  end-page: 386
  publication-title: Nature
– volume: 6
  start-page: 44170
  year: 2016
  end-page: 44194
  publication-title: RSC Adv.
– volume: 52 125
  start-page: 13024 13262
  year: 2013 2013
  end-page: 13027 13265
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 193
  year: 2018
  end-page: 198
  publication-title: ACS Energy Lett.
– volume: 93
  start-page: 409
  year: 1989
  end-page: 414
  publication-title: J. Phys. Chem.
– volume: 155
  start-page: B42
  year: 2008
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 14675
  year: 2017
  publication-title: Nat. Commun.
– volume: 581
  start-page: 178
  year: 2020
  end-page: 183
  publication-title: Nature
– volume: 24
  start-page: 454
  year: 2018
  end-page: 462
  publication-title: J. CO2 Util.
– volume: 6
  start-page: 2136
  year: 2016
  end-page: 2144
  publication-title: ACS Catal.
– volume: 10
  start-page: 4927
  year: 2017
  end-page: 4933
  publication-title: ChemSusChem
– volume: 4
  start-page: 2819
  year: 2013
  publication-title: Nat. Commun.
– volume: 134
  start-page: 19969
  year: 2012
  end-page: 19972
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 359
  year: 2007
  end-page: 364
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 2295
  year: 2018
  end-page: 2300
  publication-title: ChemElectroChem
– volume: 137
  start-page: 4606
  year: 2015
  end-page: 4609
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 4192 4238
  year: 2021 2021
  end-page: 4198 4244
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 57 130
  start-page: 9640 9788
  year: 2018 2018
  end-page: 9644 9792
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 5
  start-page: 478
  year: 2020
  end-page: 486
  publication-title: Nat. Energy
– volume: 28
  start-page: 3423
  year: 2016
  end-page: 3452
  publication-title: Adv. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2124
  year: 2019
  end-page: 2133
  publication-title: ACS Catal.
– volume: 404
  start-page: 299
  year: 1996
  end-page: 302
  publication-title: J. Electroanal. Chem.
– volume: 108
  start-page: 14049
  year: 2011
  end-page: 14054
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 2
  start-page: 1242
  year: 2018
  end-page: 1264
  publication-title: Joule
– volume: 160
  start-page: H138
  year: 2013
  end-page: H141
  publication-title: J. Electrochem. Soc.
– volume: 163
  start-page: H3132
  year: 2016
  end-page: H3134
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 5089
  year: 2015
  end-page: 5096
  publication-title: ACS Catal.
– volume: 3
  start-page: 149
  year: 2018
  end-page: 154
  publication-title: ACS Energy Lett.
– volume: 139
  start-page: 2160
  year: 2017
  end-page: 2163
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2571
  year: 2018
  end-page: 2586
  publication-title: Chem
– volume: 4
  start-page: 65176
  year: 2014
  end-page: 65183
  publication-title: RSC Adv.
– volume: 51
  start-page: 8149
  year: 2012
  end-page: 8177
  publication-title: Ind. Eng. Chem. Res.
– volume: 138
  start-page: 13006
  year: 2016
  end-page: 13012
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 3969
  year: 2019
  end-page: 3980
  publication-title: Chem. Asian J.
– volume: 6
  start-page: 339
  year: 2021
  end-page: 348
  publication-title: Nat. Energy
– volume: 139
  start-page: 16161
  year: 2017
  end-page: 16167
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 14834
  year: 2015
  end-page: 14837
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 453
  year: 2017
  end-page: 460
  publication-title: ACS Nano
– volume: 54
  start-page: 11630
  year: 2018
  end-page: 11633
  publication-title: Chem. Commun.
– volume: 11
  start-page: 893
  year: 2018
  end-page: 903
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 3774
  year: 2017
  end-page: 3783
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 8177
  year: 2015
  publication-title: Nat. Commun.
– volume: 40
  start-page: 1383
  year: 2011
  end-page: 1403
  publication-title: Chem. Soc. Rev.
– year: 2020
  publication-title: Small
– volume: 9
  start-page: 1972
  year: 2016
  end-page: 1979
  publication-title: ChemSusChem
– volume: 9
  start-page: 3783
  year: 2019
  end-page: 3791
  publication-title: ACS Catal.
– year: 2021
  publication-title: Natl. Sci. Rev.
– volume: 364
  start-page: 147
  year: 2006
  end-page: 159
  publication-title: Philos. Trans. Ser. A
– volume: 353
  start-page: 467
  year: 2016
  end-page: 470
  publication-title: Science
– volume: 5
  start-page: 21596
  year: 2017
  end-page: 21603
  publication-title: J. Mater. Chem. A
– volume: 120
  start-page: 15714
  year: 2016
  end-page: 15721
  publication-title: J. Phys. Chem. C
– volume: 140
  start-page: 4218
  year: 2018
  end-page: 4221
  publication-title: J. Am. Chem. Soc.
– volume: 107
  start-page: 3952
  year: 2007
  end-page: 3991
  publication-title: Chem. Rev.
– volume: 134
  start-page: 7231
  year: 2012
  end-page: 7234
  publication-title: J. Am. Chem. Soc.
– volume: 484
  start-page: 49
  year: 2012
  end-page: 54
  publication-title: Nature
– volume: 5
  start-page: 3242
  year: 2014
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1085
  year: 2016
  end-page: 1089
  publication-title: ChemSusChem
– volume: 1
  start-page: 1023
  year: 2017
  end-page: 1027
  publication-title: Sustainable Energy Fuels
– volume: 534
  start-page: 631
  year: 2016
  end-page: 639
  publication-title: Nature
– volume: 6
  start-page: 4443
  year: 2016
  end-page: 4448
  publication-title: ACS Catal.
– volume: 6
  start-page: 4428
  year: 2016
  end-page: 4437
  publication-title: ACS Catal.
– volume: 460
  start-page: 814
  year: 2009
  end-page: 822
  publication-title: Nature
– volume: 245
  start-page: 456
  year: 2017
  end-page: 462
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 10748
  year: 2016
  publication-title: Nat. Commun.
– volume: 338
  start-page: 90
  year: 2012
  end-page: 94
  publication-title: Science
– volume: 140
  start-page: 1004
  year: 2018
  end-page: 1010
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 5364
  year: 2015
  end-page: 5371
  publication-title: ACS Nano
– volume: 136
  start-page: 8361
  year: 2014
  end-page: 8367
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 135
  year: 2019
  end-page: 160
  publication-title: iScience
– volume: 103
  start-page: 7456
  year: 1999
  end-page: 7460
  publication-title: J. Phys. Chem. B
– volume: 47
  start-page: 3327
  year: 2002
  end-page: 3334
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 888
  year: 2021
  end-page: 926
  publication-title: Matter
– volume: 13
  start-page: 7081
  year: 2021
  end-page: 7095
  publication-title: Nanoscale
– volume: 139
  start-page: 17109
  year: 2017
  end-page: 17113
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 818
  year: 1973
  end-page: 823
  publication-title: Ber. Bunsen-Ges.
– volume: 334
  start-page: 643
  year: 2011
  end-page: 644
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1442
  year: 2019
  end-page: 1453
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 4073
  year: 2015
  end-page: 4082
  publication-title: J. Phys. Chem. Lett.
– volume: 137
  start-page: 14129
  year: 2015
  end-page: 14135
  publication-title: J. Am. Chem. Soc.
– volume: 189
  start-page: 38
  year: 2016
  end-page: 44
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 1392
  year: 2021
  end-page: 1405
  publication-title: ACS Catal.
– volume: 5
  start-page: 1064
  year: 2018
  end-page: 1072
  publication-title: ChemElectroChem
– volume: 3
  start-page: 950
  year: 2017
  end-page: 960
  publication-title: Chem
– volume: 142
  start-page: 21493
  year: 2020
  end-page: 21501
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 301
  year: 2018
  end-page: 307
  publication-title: Nat. Mater.
SSID ssj0028806
Score 2.7457645
SecondaryResourceType review_article
Snippet The electrochemical carbon dioxide reduction reaction (CO2RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the...
The electrochemical carbon dioxide reduction reaction (CO2 RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 20627
SubjectTerms Carbon dioxide
carbon dioxide reduction reaction
carbon monoxide
catalyst design
Catalysts
Chemical bonds
Chemical reduction
Conversion
Electrochemistry
electrolysis
Electrolytes
Industrial applications
Industrial development
Industrialization
Title Advances and Challenges for the Electrochemical Reduction of CO2 to CO: From Fundamentals to Industrialization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202101818
https://www.proquest.com/docview/2569343838
https://www.proquest.com/docview/2514592766
Volume 60
WOSCitedRecordID wos000647045000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJuiLd3FeRgRfy9YkzcW3MVcUZIoo7K2kSQoKtrJu_n6TtqvzVZ_akraUk3NOv9P0fB_AtZBpSIRy2U8YE1BmWeBArAhUxLnF2Bgs0kpsgk-nYjaTT2td_DU_RPvBzUdGla99gKu0HPyQhvoObFff4YpySmxCFzvnpR3o3j7Hrw9t0eX8s-4wIiTwQvQr4sYhHvy-wy-IuQ5UqzdNvPf_Z9yH3QZlolHtFgewYfND2B6vxN2OIB_Va_8lUrlB45WiSokchkUOE6JJLY-jGz4B9OwpXv0koiJD40eMFoXb3KB4Xnyg2LeT1CoBpR_40QNpujyP4TWevIzvgkZ6IXgnBItAE84NM0STjBGiGXdZMMyoFZpaFobZkBttuKstLaWGyYhIbbJQuXJLWBEZSU6gkxe5PQWkI5oxnEmV-p46SZXDdJErZNIhzqwzTQ8uVnZPmvgpEwfEJPEsqqIHV-2ws5FfzlC5LZb-nJBGEnPGeoCrWUg-a4aOpOZixom3f9LaPxlN7yft0dlfLjqHHb_vfxgJyQV0FvOlvYQt_bV4K-d92OQz0W888BuSPNtJ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FfTiW1yfEbwWt0mah7dl3aK4riIK3ko3SUHBVrarv99M2616FU-lTVvKZCb9Jsl8H8CZ0pOQqdSPfsragAsnAg9iVZBGUjpKraVqUolNyPFYPT_r-2Y3IdbC1PwQ7YQbRkY1XmOA44T0-TdrKJZg-wSPVpxTahGWuPelqANLlw_x06jNuryD1iVGjAWoRD9nbuzR899v-IUxfyLV6lcTr__DR27AWoMzSb92jE1YcPkWrAzm8m7bkPfr1f-SpLklg7mmSkk8iiUeFZJhLZBjGkYB8oAkr9iNpMjI4I6SWeEPFySeFm8kxoKSWiegxIZvRZCmznMHnuLh4-AqaMQXglfGqAoMk9IKywzLBGNGSD8Ohhl3ynAnwjDrSWus9Nml49wKHTFtbBamPuFSTkVWs13o5EXu9oCYiGeCZjqdYFWd5qlHdZFPZSY9mjlvmi4czg2fNBFUJh6KaYY8qqoLp22ztxEuaKS5Kz7wnpBHmkohukCrbkjea46OpGZjpgnaP2ntn_TH18P2bP8vD53AytXj7SgZXY9vDmAVr-P2kZAdQmc2_XBHsGw-Zy_l9LhxxC-ZBN5R
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FfXiW1xdNYLX4jZp8_C2rFsUZRVR8Fa6eYCCrWxXf7-Ttlv1Kp5Km7aUmUz6TZL5PoAzqSYhkxmOftKYIOKWBwhiZZDFQlhKjaFyUolNiPFYPj-r-2Y3oa-Fqfkh2gk3HxnVeO0D3L4bd_7NGupLsDHBoxXnlFyEpShWHGNz6fIhebptsy7soHWJEWOBV6KfMzf26fnvN_zCmD-RavWrSTb-4SM3Yb3BmWRQd4wtWLD5NqwO5_JuO5AP6tX_kmS5IcO5pkpJEMUSRIVkVAvk6IZRgDx4klfvRlI4MryjZFbg4YIk0-KNJL6gpNYJKH3DtyJIU-e5C0_J6HF4FTTiC8ErY1QGmglhuGGaOc6Y5gLHwdBFVurI8jB0fWG0EZhd2igyXMVMaePCDBMuaWVsFNuDTl7kdh-IjiPHqVPZxFfVqShDVBdjKjPpU2fRNF3ozQ2fNhFUpgjFFPM8qrILp20z2sgvaGS5LT78PSH6nArOu0ArN6TvNUdHWrMx09TbP23tnw7G16P27OAvD53Ayv1lkt5ej28OYc1f9rtHQtaDzmz6YY9gWX_OXsrpcdMPvwBTtd3M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+and+Challenges+for+the+Electrochemical+Reduction+of+CO2+to+CO%3A+From+Fundamentals+to+Industrialization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jin%2C+Song&rft.au=Hao%2C+Zhimeng&rft.au=Zhang%2C+Kai&rft.au=Yan%2C+Zhenhua&rft.date=2021-09-13&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=38&rft.spage=20627&rft_id=info:doi/10.1002%2Fanie.202101818&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon