m6A RNA methylation: from mechanisms to therapeutic potential

RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N 6 ‐methyladenosine (m 6 A), installed onto mRNA by the METTL3/METTL14 methyltransferase complex, is the most prevalent mRNA modification. m 6 A methylation regulates gene expressio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The EMBO journal Ročník 40; číslo 3
Hlavní autori: He, P Cody, He, Chuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 01.02.2021
Springer Nature B.V
John Wiley and Sons Inc
Predmet:
ISSN:0261-4189, 1460-2075
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N 6 ‐methyladenosine (m 6 A), installed onto mRNA by the METTL3/METTL14 methyltransferase complex, is the most prevalent mRNA modification. m 6 A methylation regulates gene expression by influencing numerous aspects of mRNA metabolism, including pre‐mRNA processing, nuclear export, decay, and translation. The importance of m 6 A methylation as a mode of post‐transcriptional gene expression regulation is evident in the crucial roles m 6 A‐mediated gene regulation plays in numerous physiological and pathophysiological processes. Here, we review current knowledge on the mechanisms by which m 6 A exerts its functions and discuss recent advances that underscore the multifaceted role of m 6 A in the regulation of gene expression. We highlight advances in our understanding of the regulation of m 6 A deposition on mRNA and its context‐dependent effects on mRNA decay and translation, the role of m 6 A methylation of non‐coding chromosomal‐associated RNA species in regulating transcription, and the activities of the RNA demethylase FTO on diverse substrates. We also discuss emerging evidence for the therapeutic potential of targeting m 6 A regulators in disease. Graphical Abstract Roles of the most prevalent RNA modification in post‐transcriptional regulation of gene expression, the latest understanding of its deposition and removal, and the possibility of its targeting in disease are discussed in this comprehensive review.
AbstractList RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N6‐methyladenosine (m6A), installed onto mRNA by the METTL3/METTL14 methyltransferase complex, is the most prevalent mRNA modification. m6A methylation regulates gene expression by influencing numerous aspects of mRNA metabolism, including pre‐mRNA processing, nuclear export, decay, and translation. The importance of m6A methylation as a mode of post‐transcriptional gene expression regulation is evident in the crucial roles m6A‐mediated gene regulation plays in numerous physiological and pathophysiological processes. Here, we review current knowledge on the mechanisms by which m6A exerts its functions and discuss recent advances that underscore the multifaceted role of m6A in the regulation of gene expression. We highlight advances in our understanding of the regulation of m6A deposition on mRNA and its context‐dependent effects on mRNA decay and translation, the role of m6A methylation of non‐coding chromosomal‐associated RNA species in regulating transcription, and the activities of the RNA demethylase FTO on diverse substrates. We also discuss emerging evidence for the therapeutic potential of targeting m6A regulators in disease.
RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N 6‐methyladenosine (m6A), installed onto mRNA by the METTL3/METTL14 methyltransferase complex, is the most prevalent mRNA modification. m6A methylation regulates gene expression by influencing numerous aspects of mRNA metabolism, including pre‐mRNA processing, nuclear export, decay, and translation. The importance of m6A methylation as a mode of post‐transcriptional gene expression regulation is evident in the crucial roles m6A‐mediated gene regulation plays in numerous physiological and pathophysiological processes. Here, we review current knowledge on the mechanisms by which m6A exerts its functions and discuss recent advances that underscore the multifaceted role of m6A in the regulation of gene expression. We highlight advances in our understanding of the regulation of m6A deposition on mRNA and its context‐dependent effects on mRNA decay and translation, the role of m6A methylation of non‐coding chromosomal‐associated RNA species in regulating transcription, and the activities of the RNA demethylase FTO on diverse substrates. We also discuss emerging evidence for the therapeutic potential of targeting m6A regulators in disease. Roles of the most prevalent RNA modification in post‐transcriptional regulation of gene expression, the latest understanding of its deposition and removal, and the possibility of its targeting in disease are discussed in this comprehensive review.
RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N6‐methyladenosine (m6A), installed onto mRNA by the METTL3/METTL14 methyltransferase complex, is the most prevalent mRNA modification. m6A methylation regulates gene expression by influencing numerous aspects of mRNA metabolism, including pre‐mRNA processing, nuclear export, decay, and translation. The importance of m6A methylation as a mode of post‐transcriptional gene expression regulation is evident in the crucial roles m6A‐mediated gene regulation plays in numerous physiological and pathophysiological processes. Here, we review current knowledge on the mechanisms by which m6A exerts its functions and discuss recent advances that underscore the multifaceted role of m6A in the regulation of gene expression. We highlight advances in our understanding of the regulation of m6A deposition on mRNA and its context‐dependent effects on mRNA decay and translation, the role of m6A methylation of non‐coding chromosomal‐associated RNA species in regulating transcription, and the activities of the RNA demethylase FTO on diverse substrates. We also discuss emerging evidence for the therapeutic potential of targeting m6A regulators in disease. Roles of the most prevalent RNA modification in post‐transcriptional regulation of gene expression, the latest understanding of its deposition and removal, and the possibility of its targeting in disease are discussed in this comprehensive review.
RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N 6 ‐methyladenosine (m 6 A), installed onto mRNA by the METTL3/METTL14 methyltransferase complex, is the most prevalent mRNA modification. m 6 A methylation regulates gene expression by influencing numerous aspects of mRNA metabolism, including pre‐mRNA processing, nuclear export, decay, and translation. The importance of m 6 A methylation as a mode of post‐transcriptional gene expression regulation is evident in the crucial roles m 6 A‐mediated gene regulation plays in numerous physiological and pathophysiological processes. Here, we review current knowledge on the mechanisms by which m 6 A exerts its functions and discuss recent advances that underscore the multifaceted role of m 6 A in the regulation of gene expression. We highlight advances in our understanding of the regulation of m 6 A deposition on mRNA and its context‐dependent effects on mRNA decay and translation, the role of m 6 A methylation of non‐coding chromosomal‐associated RNA species in regulating transcription, and the activities of the RNA demethylase FTO on diverse substrates. We also discuss emerging evidence for the therapeutic potential of targeting m 6 A regulators in disease. Graphical Abstract Roles of the most prevalent RNA modification in post‐transcriptional regulation of gene expression, the latest understanding of its deposition and removal, and the possibility of its targeting in disease are discussed in this comprehensive review.
Author He, Chuan
He, P Cody
AuthorAffiliation 1 Department of Chemistry Department of Biochemistry and Molecular Biology Institute for Biophysical Dynamics The University of Chicago Chicago IL USA
3 Howard Hughes Medical Institute The University of Chicago Chicago IL USA
2 Committee on Immunology The University of Chicago Chicago IL USA
AuthorAffiliation_xml – name: 2 Committee on Immunology The University of Chicago Chicago IL USA
– name: 1 Department of Chemistry Department of Biochemistry and Molecular Biology Institute for Biophysical Dynamics The University of Chicago Chicago IL USA
– name: 3 Howard Hughes Medical Institute The University of Chicago Chicago IL USA
Author_xml – sequence: 1
  givenname: P Cody
  orcidid: 0000-0002-6171-810X
  surname: He
  fullname: He, P Cody
  organization: Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Committee on Immunology, The University of Chicago, Howard Hughes Medical Institute, The University of Chicago
– sequence: 2
  givenname: Chuan
  orcidid: 0000-0003-4319-7424
  surname: He
  fullname: He, Chuan
  email: chuanhe@uchicago.edu
  organization: Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Committee on Immunology, The University of Chicago, Howard Hughes Medical Institute, The University of Chicago
BookMark eNp1kEtLw0AUhQdR7EP3LgOuU-f9EBVqqS-qgnQ_TKY3bUqSqUmq9N8bbbG4cHW5j_Ody-mhwzKUgNAZwQMiqKAXUCTLAcUUEyyMUgeoS7jEMcVKHKIuppLEnGjTQb26XmKMhVbkGHUY4wpzZrroupDD6O1lGBXQLDa5a7JQXkZpFYp24heuzOqijpoQNQuo3ArWTeajVWigbDKXn6Cj1OU1nO5qH03vxtPRQzx5vX8cDSfxklGj4lRq7eQMaCqk0RInUsw0cOmVSjTzGgwISYF5oVSaME9MaqRPZgY811KzPrrZYlfrpICZb80rl9tVlRWu2tjgMvt3U2YLOw8fVmluiOQt4HwHqML7GurGLsO6KtuXLeWaE8OUoe3V1fbqM8th84sn2P6Ebb_Dtvuw7fj59mnftnKyldetspxDtTf5D8G-ABcWhm0
ContentType Journal Article
Copyright The Author(s) 2021
2021 The Authors
2021 EMBO
Copyright_xml – notice: The Author(s) 2021
– notice: 2021 The Authors
– notice: 2021 EMBO
DBID 7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
5PM
DOI 10.15252/embj.2020105977
DatabaseName Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList Virology and AIDS Abstracts



DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate P Cody He & Chuan He
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC7849164
EMBJ2020105977
10_15252_embj_2020105977
Genre reviewArticle
GrantInformation_xml – fundername: NICHD
  grantid: T32 HD007009
– fundername: NIH
  grantid: R01 ES030546; RM1 HG008935
– fundername: NIH
  funderid: R01 ES030546; RM1 HG008935
– fundername: NICHD
  funderid: T32 HD007009
GroupedDBID ---
-DZ
-~X
0R~
123
1OC
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAIHA
AAJSJ
AAMMB
AANLZ
AAONW
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABZEH
ACAHQ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AFBPY
AFFNX
AFGKR
AFRAH
AFWVQ
AFZJQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
NAO
O8X
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
YSK
ZCA
ZZTAW
~KM
24P
AAHHS
ABJNI
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
RHF
WYJ
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
ESTFP
FR3
H94
K9.
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-j3297-f688a6de2f569860b65d8e46c77b83c8e9e562e3c577fb3c19f96cbd9ec48683
IEDL.DBID WIN
ISICitedReferencesCount 555
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608850000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0261-4189
IngestDate Tue Sep 30 16:55:32 EDT 2025
Fri Oct 03 10:51:16 EDT 2025
Wed Jan 22 16:30:06 EST 2025
Sat Nov 29 01:24:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords epitranscriptome
mRNA
m
A methylation
gene expression
RNA modifications
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j3297-f688a6de2f569860b65d8e46c77b83c8e9e562e3c577fb3c19f96cbd9ec48683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6171-810X
0000-0003-4319-7424
PMID 33470439
PQID 2484193792
PQPubID 35985
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7849164
proquest_journals_2484193792
wiley_primary_10_15252_embj_2020105977_EMBJ2020105977
springer_journals_10_15252_embj_2020105977
PublicationCentury 2000
PublicationDate 01 February 2021
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 01 February 2021
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationYear 2021
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References 2018; 561
2012; 485
2019; 10
2018; 563
2019; 15
2019; 566
2020; 16
2016b; 534
2019; 18
2014; 24
2014; 28
2017; 552
1997; 3
2018; 46
2017b; 8
2018; 8
1994; 269
2018; 172
2018; 4
2015; 137
2019; 20
2014a; 505
2019; 21
2015a; 162
2020a; 367
2019; 25
2019; 28
2014; 15
2008; 20
2017; 168
2018; 32
2017; 169
2020b; 77
2014; 10
2019; 9
2018; 28
2019; 6
2019; 1
1974; 71
2017; 65
2017; 68
2017; 67
2018b; 9
2020; 32
2019a; 29
2018; 20
2003; 31
2011; 7
2016; 13
2017; 139
2009; 458
2018; 24
2018b; 28
2015; 350
2016; 5
2016; 7
2017b; 31
2020; 30
1977; 16
2018; 115
2019; 47
2015; 519
2015; 518
2020; 22
2020; 21
2018b; 97
2017; 541
2016; 26
2019; 178
2016; 23
2018; 14
2019; 571
2017; 6
2015b; 519
2019a; 10
2015; 347
2002; 55
2017; 45
2019; 365
2019; 363
2016a; 63
2017; 31
2020; 4
2017a; 548
2018c; 21
2019a; 567
2014b; 16
2020; 52
2017a; 549
2016; 113
2018; 71
2014; 8
1975; 4
2015; 163
2015; 161
2018; 140
2019b; 104
2013; 49
2019; 75
2019b; 35
2018a; 22
2019; 74
2017; 27
2019; 76
2020; 181
2017; 24
2017; 23
2020; 105
2017; 171
2018; 67
2012; 149
1975; 72
2017; 215
2018; 69
2018a; 19
2012; 3
2011; 108
2015; 29
2017; 15
2016; 537
2020
2018; 555
2017; 13
2019b; 26
2018a; 16
2017c; 31
2016; 61
2017; 18
2019; 139
2009; 5
2018a; 9
2012; 8
References_xml – volume: 7
  start-page: 12626
  year: 2016
  article-title: YTHDF2 destabilizes m A‐containing RNA through direct recruitment of the CCR4–NOT deadenylase complex
  publication-title: Nat Commun
– volume: 4
  start-page: 10
  year: 2018
  article-title: VIRMA mediates preferential m6A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation
  publication-title: Cell Discov
– volume: 6
  year: 2017
  article-title: YTHDC1 mediates nuclear export of N6‐methyladenosine methylated mRNAs
  publication-title: Elife
– volume: 75
  start-page: 967
  year: 2019
  end-page: 981
  article-title: Nuclear TARBP2 drives oncogenic dysregulation of RNA splicing and decay
  publication-title: Mol Cell
– volume: 5
  year: 2016
  article-title: Structural insights into the molecular mechanism of the m(6)A writer complex
  publication-title: Elife
– volume: 172
  start-page: 90
  year: 2018
  end-page: 105
  article-title: R‐2HG exhibits anti‐tumor activity by targeting FTO/m6A/MYC/CEBPA signaling
  publication-title: Cell
– volume: 350
  start-page: 978
  year: 2015
  end-page: 981
  article-title: Transcription factor trapping by RNA in gene regulatory elements
  publication-title: Science
– volume: 518
  start-page: 560
  year: 2015
  end-page: 564
  article-title: N6‐methyladenosine‐dependent RNA structural switches regulate RNA‐protein interactions
  publication-title: Nature
– volume: 571
  start-page: 424
  year: 2019
  end-page: 428
  article-title: m 6 A enhances the phase separation potential of mRNA
  publication-title: Nature
– volume: 16
  start-page: 191
  year: 2014b
  end-page: 198
  article-title: N6‐methyladenosine modification destabilizes developmental regulators in embryonic stem cells
  publication-title: Nat Cell Biol
– volume: 22
  start-page: 54
  year: 2020
  end-page: 66
  article-title: Changes in m6A RNA methylation contribute to heart failure progression by modulating translation
  publication-title: Eur J Heart Fail
– volume: 4
  start-page: 221
  year: 2020
  end-page: 240
  article-title: RNA modifications in cancer: functions, mechanisms, and therapeutic implications
  publication-title: Ann Rev Cancer Biol
– volume: 139
  start-page: 518
  year: 2019
  end-page: 532
  article-title: FTO‐dependent m6A regulates cardiac function during remodeling and repair
  publication-title: Circulation
– volume: 18
  start-page: 2622
  year: 2017
  end-page: 2634
  article-title: m6A RNA methylation regulates the self‐renewal and tumorigenesis of glioblastoma stem cells
  publication-title: Cell Rep
– volume: 21
  start-page: 195
  year: 2018c
  end-page: 206
  article-title: N6‐methyladenosine RNA modification regulates embryonic neural stem cell self‐renewal through histone modifications
  publication-title: Nat Neurosci
– volume: 181
  start-page: 1582
  year: 2020
  end-page: 1595
  article-title: A unified model for the function of YTHDF proteins in regulating m6A‐modified mRNA
  publication-title: Cell
– volume: 35
  start-page: 677
  year: 2019b
  end-page: 691
  article-title: Small‐molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia
  publication-title: Cancer Cell
– volume: 139
  start-page: 533
  year: 2019
  end-page: 545
  article-title: The N6‐methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy
  publication-title: Circulation
– volume: 367
  start-page: 580
  year: 2020a
  end-page: 586
  article-title: N6‐methyladenosine of chromosome‐associated regulatory RNA regulates chromatin state and transcription
  publication-title: Science
– volume: 28
  start-page: 1035
  year: 2018b
  end-page: 1038
  article-title: Loss of YTHDF2‐mediated m6A‐dependent mRNA clearance facilitates hematopoietic stem cell regeneration
  publication-title: Cell Res
– volume: 23
  start-page: 1369
  year: 2017
  end-page: 1376
  article-title: The N6‐methyladenosine (m6A)‐forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells
  publication-title: Nat Med
– volume: 67
  start-page: 2254
  year: 2018
  end-page: 2270
  article-title: RNA N6‐methyladenosine methyltransferase‐like 3 promotes liver cancer progression through YTHDF2‐dependent posttranscriptional silencing of SOCS2
  publication-title: Hepatology
– volume: 61
  start-page: 507
  year: 2016
  end-page: 519
  article-title: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing
  publication-title: Mol Cell
– volume: 69
  start-page: 636
  year: 2018
  end-page: 647
  article-title: N6‐methyladenosine guides mRNA alternative translation during integrated stress response
  publication-title: Mol Cell
– volume: 3
  start-page: 48
  year: 2012
  article-title: Adenosine methylation in mRNA is associated with the 3′ end and reduced levels cause developmental defects
  publication-title: Front Plant Sci
– volume: 9
  start-page: 1
  year: 2018b
  end-page: 12
  article-title: Mettl3‐mediated m 6 A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis
  publication-title: Nat Commun
– volume: 10
  start-page: 1
  year: 2019a
  end-page: 14
  article-title: m 6 A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti‐PD‐1 blockade
  publication-title: Nat Commun
– volume: 113
  start-page: E2047
  year: 2016
  end-page: E2056
  article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF‐dependent and ALKBH5‐mediated m6A‐demethylation of NANOG mRNA
  publication-title: PNAS
– volume: 46
  start-page: 5195
  year: 2018
  end-page: 5208
  article-title: SUMOylation of the m6A‐RNA methyltransferase METTL3 modulates its function
  publication-title: Nucleic Acids Res
– volume: 566
  start-page: 270
  year: 2019
  end-page: 274
  article-title: Anti‐tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells
  publication-title: Nature
– volume: 15
  start-page: 88
  year: 2019
  end-page: 94
  article-title: N 6 ‐methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation
  publication-title: Nat Chem Biol
– volume: 549
  start-page: 273
  year: 2017a
  end-page: 276
  article-title: m 6 A modulates haematopoietic stem and progenitor cell specification
  publication-title: Nature
– volume: 555
  start-page: 256
  year: 2018
  end-page: 259
  article-title: The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency
  publication-title: Nature
– volume: 15
  start-page: 340
  year: 2019
  end-page: 347
  article-title: FTO controls reversible m6Am RNA methylation during snRNA biogenesis
  publication-title: Nat Chem Biol
– volume: 31
  start-page: 591
  year: 2017b
  end-page: 606
  article-title: m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem‐like cells by sustaining FOXM1 expression and cell proliferation program
  publication-title: Cancer Cell
– volume: 65
  start-page: 529
  year: 2017
  end-page: 543
  article-title: METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6 ‐methyladenosine‐dependent primary MicroRNA processing
  publication-title: Hepatology
– volume: 26
  start-page: 896
  year: 2016
  end-page: 907
  article-title: The interaction of PRC2 with RNA or chromatin is mutually antagonistic
  publication-title: Genome Res
– volume: 45
  start-page: 6051
  year: 2017
  end-page: 6063
  article-title: N6‐methyladenosine alters RNA structure to regulate binding of a low‐complexity protein
  publication-title: Nucleic Acids Res.
– volume: 29
  start-page: 2037
  year: 2015
  end-page: 2053
  article-title: A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation
  publication-title: Genes Dev
– volume: 3
  start-page: 1233
  year: 1997
  end-page: 1247
  article-title: Purification and cDNA cloning of the AdoMet‐binding subunit of the human mRNA (N6‐adenosine)‐methyltransferase
  publication-title: RNA
– volume: 168
  start-page: 135
  year: 2017
  end-page: 149
  article-title: RNA binding to CBP stimulates histone acetylation and transcription
  publication-title: Cell
– volume: 28
  start-page: 1983
  year: 2014
  end-page: 1988
  article-title: Nascent RNA interaction keeps PRC2 activity poised and in check
  publication-title: Genes Dev
– volume: 46
  start-page: 1412
  year: 2018
  end-page: 1423
  article-title: Dynamic m6A modification regulates local translation of mRNA in axons
  publication-title: Nucleic Acids Res
– volume: 5
  year: 2009
  article-title: An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data
  publication-title: PLoS Comput Biol
– volume: 534
  start-page: 575
  year: 2016b
  end-page: 578
  article-title: Structural basis of N(6)‐adenosine methylation by the METTL3‐METTL14 complex
  publication-title: Nature
– volume: 75
  start-page: 620
  year: 2019
  end-page: 630
  article-title: PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression
  publication-title: Mol Cell
– volume: 7
  start-page: 885
  year: 2011
  end-page: 887
  article-title: N6‐methyladenosine in nuclear RNA is a major substrate of the obesity‐associated FTO
  publication-title: Nat Chem Biol
– volume: 28
  start-page: 1062
  year: 2018
  end-page: 1076
  article-title: A dynamic N6‐methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors
  publication-title: Cell Res
– volume: 24
  start-page: 177
  year: 2014
  end-page: 189
  article-title: Mammalian WTAP is a regulatory subunit of the RNA N6‐methyladenosine methyltransferase
  publication-title: Cell Res
– volume: 63
  start-page: 306
  year: 2016a
  end-page: 317
  article-title: Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases
  publication-title: Mol Cell
– volume: 71
  start-page: 986
  year: 2018
  end-page: 1000
  article-title: Methylation of structured RNA by the m6A writer METTL16 is essential for mouse embryonic development
  publication-title: Mol Cell
– volume: 30
  start-page: 544
  year: 2020
  end-page: 547
  article-title: METTL4 is an snRNA m6Am methyltransferase that regulates RNA splicing
  publication-title: Cell Res
– volume: 561
  start-page: 556
  year: 2018
  end-page: 560
  article-title: mRNA circularization by METTL3‐eIF3h enhances translation and promotes oncogenesis
  publication-title: Nature
– volume: 541
  start-page: 371
  year: 2017
  end-page: 375
  article-title: Reversible methylation of m6Am in the 5’ cap controls mRNA stability
  publication-title: Nature
– volume: 4
  start-page: 379
  year: 1975
  end-page: 386
  article-title: Methylated nucleotides block 5’ terminus of HeLa cell messenger RNA
  publication-title: Cell
– volume: 9
  start-page: 1
  year: 2018a
  end-page: 12
  article-title: Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1
  publication-title: Nat Commun
– volume: 67
  start-page: 1059
  year: 2017
  end-page: 1067
  article-title: The RNA m6A reader YTHDF2 is essential for the post‐transcriptional regulation of the maternal transcriptome and oocyte competence
  publication-title: Mol Cell
– volume: 162
  start-page: 1299
  year: 2015a
  end-page: 1308
  article-title: HNRNPA2B1 is a mediator of m6A‐dependent nuclear RNA processing events
  publication-title: Cell
– volume: 215
  start-page: 157
  year: 2017
  end-page: 172
  article-title: Identification of factors required for m6 A mRNA methylation in reveals a role for the conserved E3 ubiquitin ligase HAKAI
  publication-title: New Phytol
– volume: 23
  start-page: 110
  year: 2016
  end-page: 115
  article-title: N 6 ‐methyladenosine in mRNA disrupts tRNA selection and translation‐elongation dynamics
  publication-title: Nat Struct Mol Biol
– volume: 21
  start-page: 700
  year: 2019
  end-page: 709
  article-title: Stage‐specific requirement for Mettl3 ‐dependent m 6 A mRNA methylation during haematopoietic stem cell differentiation
  publication-title: Nat Cell Biol
– volume: 140
  start-page: 11974
  year: 2018
  end-page: 11981
  article-title: Targeted m6A reader proteins to study epitranscriptomic regulation of single RNAs
  publication-title: J Am Chem Soc
– volume: 8
  start-page: 284
  year: 2014
  end-page: 296
  article-title: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites
  publication-title: Cell Rep
– volume: 104
  start-page: 665
  year: 2019b
  end-page: 673
  article-title: Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes
  publication-title: J Clin Endocrinol Metab
– volume: 149
  start-page: 1635
  year: 2012
  end-page: 1646
  article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons
  publication-title: Cell
– volume: 25
  start-page: 137
  year: 2019
  end-page: 148
  article-title: Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia
  publication-title: Cell Stem Cell
– volume: 74
  start-page: 494
  year: 2019
  end-page: 507
  article-title: Endoribonucleolytic cleavage of m6A‐containing RNAs by RNase P/MRP complex
  publication-title: Mol Cell
– volume: 10
  start-page: 1
  year: 2019
  end-page: 11
  article-title: m 6 A in mRNA coding regions promotes translation via the RNA helicase‐containing YTHDC2
  publication-title: Nat Commun
– volume: 16
  start-page: 1672
  year: 1977
  end-page: 1676
  article-title: Nucleotide sequences at the N6‐methyladenosine sites of HeLa cell messenger ribonucleic acid
  publication-title: Biochemistry
– volume: 505
  start-page: 117
  year: 2014a
  end-page: 120
  article-title: N6‐methyladenosine‐dependent regulation of messenger RNA stability
  publication-title: Nature
– volume: 6
  start-page: 235
  year: 2019
  end-page: 253
  article-title: Regulation of viral infection by the RNA modification N6‐methyladenosine
  publication-title: Ann Rev Virol
– volume: 537
  start-page: 369
  year: 2016
  end-page: 373
  article-title: m(6)A RNA methylation promotes XIST‐mediated transcriptional repression
  publication-title: Nature
– volume: 20
  start-page: 1278
  year: 2008
  end-page: 1288
  article-title: MTA is an messenger RNA adenosine methylase and interacts with a homolog of a sex‐specific splicing factor
  publication-title: Plant Cell
– volume: 19
  start-page: 69
  year: 2018a
  article-title: Ythdf2‐mediated m6A mRNA clearance modulates neural development in mice
  publication-title: Genome Biol
– volume: 161
  start-page: 1388
  year: 2015
  end-page: 1399
  article-title: N6‐methyladenosine modulates messenger RNA translation efficiency
  publication-title: Cell
– volume: 16
  year: 2018a
  article-title: METTL3‐mediated m6A modification is required for cerebellar development
  publication-title: PLoS Biol
– volume: 74
  start-page: 1138
  year: 2019
  end-page: 1147
  article-title: An adversarial DNA N6‐methyladenine‐sensor network preserves polycomb silencing
  publication-title: Mol Cell
– volume: 21
  start-page: 651
  year: 2019
  end-page: 661
  article-title: The RNA N6‐methyladenosine modification landscape of human fetal tissues
  publication-title: Nat Cell Biol
– volume: 171
  start-page: 877
  year: 2017
  end-page: 889
  article-title: Temporal control of mammalian cortical neurogenesis by m6A methylation
  publication-title: Cell
– volume: 9
  year: 2019
  article-title: N6‐methyladenosine (m6A): a promising new molecular target in acute myeloid leukemia
  publication-title: Front Oncol
– volume: 8
  start-page: 96103
  year: 2017b
  end-page: 96116
  article-title: The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma
  publication-title: Oncotarget
– volume: 76
  start-page: 70
  year: 2019
  end-page: 81
  article-title: Regulation of co‐transcriptional pre‐mRNA splicing by m6A through the low‐complexity protein hnRNPG
  publication-title: Mol Cell
– volume: 1
  start-page: 765
  year: 2019
  end-page: 774
  article-title: m 6 A mRNA methylation regulates human β‐cell biology in physiological states and in type 2 diabetes
  publication-title: Nature Metabolism
– volume: 20
  start-page: 285
  year: 2018
  end-page: 295
  article-title: Recognition of RNA N6‐methyladenosine by IGF2BP proteins enhances mRNA stability and translation
  publication-title: Nat Cell Biol
– volume: 108
  start-page: 14855
  year: 2011
  end-page: 14860
  article-title: Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis
  publication-title: Proc Natl Acad Sci USA
– volume: 15
  start-page: 707
  year: 2014
  end-page: 719
  article-title: m6A RNA modification controls cell fate transition in mammalian embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 32
  start-page: 415
  year: 2018
  end-page: 429
  article-title: Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA‐binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d
  publication-title: Genes Dev
– volume: 18
  start-page: 1094
  year: 2017
  end-page: 1103
  article-title: The RNA helicase DDX46 inhibits innate immunity by entrapping m 6 A‐demethylated antiviral transcripts in the nucleus
  publication-title: Nat Immunol
– volume: 47
  start-page: 7719
  year: 2019
  end-page: 7733
  article-title: The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112
  publication-title: Nucleic Acids Res
– volume: 10
  start-page: 3399
  year: 2019
  article-title: Detailed modeling of positive selection improves detection of cancer driver genes
  publication-title: Nat Commun
– volume: 13
  start-page: 692
  year: 2016
  end-page: 698
  article-title: m 6 A‐LAIC‐seq reveals the census and complexity of the m 6 A epitranscriptome
  publication-title: Nat Methods
– volume: 29
  start-page: 80
  year: 2019a
  end-page: 82
  article-title: Cap‐specific, terminal N 6 ‐methylation by a mammalian m 6 Am methyltransferase
  publication-title: Cell Res
– volume: 52
  start-page: 939
  year: 2020
  end-page: 949
  article-title: Genetic analyses support the contribution of mRNA N 6 ‐methyladenosine (m 6 A) modification to human disease heritability
  publication-title: Nat Genet
– volume: 27
  start-page: 1115
  year: 2017
  end-page: 1127
  article-title: Ythdc2 is an N6‐methyladenosine binding protein that regulates mammalian spermatogenesis
  publication-title: Cell Res
– volume: 31
  start-page: 4472
  year: 2003
  end-page: 4480
  article-title: The thermodynamic stability of RNA duplexes and hairpins containing N6‐alkyladenosines and 2‐methylthio‐N6‐alkyladenosines
  publication-title: Nucleic Acids Res
– volume: 71
  start-page: 1001
  year: 2018
  end-page: 1011
  article-title: Structural basis for regulation of METTL16, an S‐adenosylmethionine homeostasis factor
  publication-title: Mol. Cell
– volume: 32
  start-page: 1472
  year: 2018
  end-page: 1484
  article-title: RNA m6 A modification enzymes shape innate responses to DNA by regulating interferon β
  publication-title: Genes Dev
– volume: 519
  start-page: 482
  year: 2015b
  end-page: 485
  article-title: N6‐methyl‐adenosine (m6A) marks primary microRNAs for processing
  publication-title: Nature
– volume: 97
  start-page: 313
  year: 2018b
  end-page: 325
  article-title: Epitranscriptomic m6A regulation of axon regeneration in the adult mammalian nervous system
  publication-title: Neuron
– volume: 105
  start-page: 293
  year: 2020
  end-page: 309
  article-title: m6A mRNA methylation is essential for oligodendrocyte maturation and CNS myelination
  publication-title: Neuron
– volume: 24
  start-page: 1028
  year: 2017
  end-page: 1038
  article-title: Molecular analysis of PRC2 recruitment to DNA in chromatin and its inhibition by RNA
  publication-title: Nat Struct Mol Biol
– volume: 20
  start-page: 173
  year: 2019
  end-page: 182
  article-title: m6A modification controls the innate immune response to infection by targeting type I interferons
  publication-title: Nat Immunol
– volume: 458
  start-page: 894
  year: 2009
  end-page: 898
  article-title: Inactivation of the Fto gene protects from obesity
  publication-title: Nature
– year: 2020
  article-title: Context‐dependent functional compensation between Ythdf m6A readers
  publication-title: BioRxiv
– volume: 16
  start-page: 955
  year: 2020
  end-page: 963
  article-title: m 6 A‐binding YTHDF proteins promote stress granule formation
  publication-title: Nat Chem Biol
– volume: 14
  year: 2018
  article-title: Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development
  publication-title: PLoS Genet
– volume: 77
  start-page: 426
  year: 2020b
  end-page: 440
  article-title: Landscape and regulation of m6A and m6Am methylome across human and mouse tissues
  publication-title: Mol Cell
– volume: 4
  start-page: 715
  year: 2020
  end-page: 729
  article-title: The rRNA m6A methyltransferase METTL5 is involved in pluripotency and developmental programs
  publication-title: Genes Dev
– volume: 563
  start-page: 249
  year: 2018
  end-page: 253
  article-title: m 6 A facilitates hippocampus‐dependent learning and memory through YTHDF1
  publication-title: Nature
– volume: 552
  start-page: 126
  year: 2017
  end-page: 131
  article-title: Promoter‐bound METTL3 maintains myeloid leukaemia by m6A‐dependent translation control
  publication-title: Nature
– volume: 8
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Structural insights into the RNA methyltransferase domain of METTL16
  publication-title: Sci Rep
– volume: 163
  start-page: 999
  year: 2015
  end-page: 1010
  article-title: 5’ UTR m(6)A promotes cap‐independent translation
  publication-title: Cell
– volume: 137
  start-page: 2107
  year: 2015
  end-page: 2115
  article-title: Structure and thermodynamics of N6‐methyladenosine in RNA: a spring‐loaded base modification
  publication-title: J Am Chem Soc
– volume: 28
  start-page: 1703
  year: 2019
  end-page: 1716
  article-title: m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment
  publication-title: Cell Rep
– volume: 18
  start-page: 892
  year: 2019
  end-page: 894
  article-title: Chemical inhibitors make their RNA epigenetic mark
  publication-title: Nat Rev Drug Discovery
– year: 2020
  article-title: METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre‐mRNA splicing
  publication-title: bioRxiv
– volume: 519
  start-page: 486
  year: 2015
  end-page: 490
  article-title: Structural imprints decode RNA regulatory mechanisms
  publication-title: Nature
– volume: 31
  start-page: 127
  year: 2017c
  end-page: 141
  article-title: FTO plays an oncogenic role in acute myeloid leukemia as a N6‐methyladenosine RNA demethylase
  publication-title: Cancer Cell
– volume: 49
  start-page: 18
  year: 2013
  end-page: 29
  article-title: ALKBH5 Is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility
  publication-title: Mol Cell
– volume: 10
  start-page: 1
  year: 2019
  end-page: 12
  article-title: Mettl3‐mediated mRNA m 6 A methylation promotes dendritic cell activation
  publication-title: Nat Commun
– volume: 485
  start-page: 201
  year: 2012
  end-page: 206
  article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A‐seq
  publication-title: Nature
– volume: 26
  start-page: 322
  year: 2019b
  end-page: 330
  article-title: RNA structure maps across mammalian cellular compartments
  publication-title: Nat Struct Mol Biol
– volume: 20
  start-page: 294
  year: 2019
  article-title: RADAR: differential analysis of MeRIP‐seq data with a random effect model
  publication-title: Genome Biol
– volume: 27
  start-page: 1216
  year: 2017
  end-page: 1230
  article-title: Mettl3‐/Mettl14‐mediated mRNA N 6 ‐methyladenosine modulates murine spermatogenesis
  publication-title: Cell Res
– volume: 169
  start-page: 326
  year: 2017
  end-page: 337
  article-title: Transcription impacts the efficiency of mRNA translation via co‐transcriptional N6‐adenosine methylation
  publication-title: Cell
– volume: 139
  start-page: 17249
  year: 2017
  end-page: 17252
  article-title: RNA chemical proteomics reveals the N6‐methyladenosine (m6A)‐regulated protein‐RNA interactome
  publication-title: J Am Chem Soc
– volume: 21
  year: 2020
  article-title: The 18S ribosomal RNA m6A methyltransferase Mettl5 is required for normal walking behavior in
  publication-title: EMBO Rep
– volume: 69
  start-page: 1028
  year: 2018
  end-page: 1038
  article-title: Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self‐renewal
  publication-title: Mol Cell
– volume: 269
  start-page: 17697
  year: 1994
  end-page: 17704
  article-title: Characterization and partial purification of mRNA N6‐adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex
  publication-title: J Biol Chem
– volume: 32
  year: 2020
  article-title: The mammalian cap‐specific m6Am RNA methyltransferase PCIF1 regulates transcript levels in mouse tissues
  publication-title: Cell Rep
– volume: 347
  start-page: 1002
  year: 2015
  end-page: 1006
  article-title: m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation
  publication-title: Science
– volume: 365
  start-page: 1171
  year: 2019
  end-page: 1176
  article-title: N6‐methyladenosine RNA modification–mediated cellular metabolism rewiring inhibits viral replication
  publication-title: Science
– volume: 28
  start-page: 904
  year: 2018b
  end-page: 917
  article-title: Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion
  publication-title: Cell Res.
– volume: 27
  start-page: 315
  year: 2017
  end-page: 328
  article-title: YTHDF3 facilitates translation and decay of N6‐methyladenosine‐modified RNA
  publication-title: Cell Res
– volume: 10
  start-page: 93
  year: 2014
  end-page: 95
  article-title: A METTL3‐METTL14 complex mediates mammalian nuclear RNA N6‐adenosine methylation
  publication-title: Nat Chem Biol
– volume: 567
  start-page: 414
  year: 2019a
  end-page: 419
  article-title: Histone H3 trimethylation at lysine 36 guides m6A RNA modification co‐transcriptionally
  publication-title: Nature
– volume: 178
  start-page: 731
  year: 2019
  end-page: 747
  article-title: Deciphering the “m6A Code” via antibody‐independent quantitative profiling
  publication-title: Cell
– volume: 115
  start-page: 3674
  year: 2018
  end-page: 3679
  article-title: Xio is a component of the sex determination pathway and RNA N6‐methyladenosine methyltransferase complex
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  year: 2017
  article-title: RNA modifications go viral
  publication-title: PLoS Pathog
– volume: 75
  start-page: 631
  year: 2019
  end-page: 643
  article-title: Identification of the m6Am methyltransferase PCIF1 reveals the location and functions of m6Am in the transcriptome
  publication-title: Mol Cell
– volume: 22
  start-page: 191
  year: 2018a
  end-page: 205
  article-title: METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification
  publication-title: Cell Stem Cell
– volume: 4
  start-page: 387
  year: 1975
  end-page: 394
  article-title: The methylated constituents of L cell messenger RNA: evidence for an unusual cluster at the 5′ terminus
  publication-title: Cell
– volume: 55
  start-page: 431
  year: 2002
  end-page: 444
  article-title: Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT‐A70 subunit of the human mRNA:m(6)A methyltransferase
  publication-title: J Mol Evol
– volume: 31
  start-page: 990
  year: 2017
  end-page: 1006
  article-title: m6A mRNA modifications are deposited in nascent pre‐mRNA and are not required for splicing but do specify cytoplasmic turnover
  publication-title: Genes Dev
– volume: 169
  start-page: 824
  year: 2017
  end-page: 835
  article-title: The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention
  publication-title: Cell
– volume: 363
  year: 2019
  article-title: Cap‐specific terminal N6‐methylation of RNA by an RNA polymerase II‐associated methyltransferase
  publication-title: Science
– volume: 71
  start-page: 3971
  year: 1974
  end-page: 3975
  article-title: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells
  publication-title: PNAS
– volume: 548
  start-page: 338
  year: 2017a
  end-page: 342
  article-title: m6A mRNA methylation controls T cell homeostasis by targeting the IL‐7/STAT5/SOCS pathways
  publication-title: Nature
– volume: 20
  start-page: 1074
  year: 2018
  end-page: 1083
  article-title: m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer
  publication-title: Nat. Cell Biol.
– volume: 24
  start-page: 1339
  year: 2018
  end-page: 1350
  article-title: The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′–3′ exoribonuclease XRN1
  publication-title: RNA
– volume: 68
  start-page: 374
  year: 2017
  end-page: 387
  article-title: Regulation of m6A transcripts by the 3ʹ→5ʹ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline
  publication-title: Mol Cell
– volume: 71
  start-page: 973
  year: 2018
  end-page: 985
  article-title: Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm
  publication-title: Mol Cell
– volume: 72
  start-page: 2012
  year: 1975
  end-page: 2016
  article-title: Methylated simian virus 40‐specific RNA from nuclei and cytoplasm of infected BSC‐1 cells
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  year: 2012
  article-title: RNA methylation by the MIS complex regulates a cell fate decision in yeast
  publication-title: PLoS Genet
– volume: 24
  start-page: 870
  year: 2017
  end-page: 878
  article-title: N6‐methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis
  publication-title: Nat Struct Mol Biol
– volume: 15
  start-page: 154
  year: 2017
  end-page: 163
  article-title: The RNA modification N6‐methyladenosine and its implications in human disease
  publication-title: Genomics Proteomics Bioinformatics
SSID ssj0005871
Score 2.7258058
SecondaryResourceType review_article
Snippet RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N 6 ‐methyladenosine (m 6 A), installed...
RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N6‐methyladenosine (m6A), installed onto...
RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N 6‐methyladenosine (m6A), installed onto...
SourceID pubmedcentral
proquest
wiley
springer
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Decay
DNA methylation
EMBO36
epitranscriptome
Gene expression
Gene regulation
m6A methylation
Methylation
Methyltransferase
mRNA
mRNA processing
mRNA turnover
N6-methyladenosine
Nuclear transport
Review
Reviews
Ribonucleic acid
RNA
RNA modification
RNA modifications
Substrates
Transcription
Translation
Title m6A RNA methylation: from mechanisms to therapeutic potential
URI https://link.springer.com/article/10.15252/embj.2020105977
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2020105977
https://www.proquest.com/docview/2484193792
https://pubmed.ncbi.nlm.nih.gov/PMC7849164
Volume 40
WOSCitedRecordID wos000608850000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6kKnrxURXro-TgSQg2yWYfgoeqLSq1h1Kxt5DdbLBiWzFV8N-7s0laK3gRTyGvIczsTGZ2Zr4BOAkTL5Vh0HDjlJgARRLfFQFN3ESZAybmfG1BXDus2-WDgfjeC5PjQ8w23FAzrL1GBY9lVk7sQdRQPZLPJsDDdC6CqBkz7BEPhxg83nbnVR7cxlx2m4V4XBSZSiRx9oPAgo_5s0JyliZddGLtX6i9-R_fvwUbhQ_qNPNFsw1LelyF1Xwq5WcV1q7KIXA7cDGiTafXbTo4afozr5s7d7AnxVzBpuFhNsqc6cT51sflvE6mWIMUv-xCv93qX924xcQF9znwBXNTynlME-2nIRWcNiQNE64JVYxJHiiuhTb-kg5UyFgqA-WJVFAlE6EV4ZQHe1AZT8Z6HxyaChKKBrYSGTMhpJDShE4qCCURccqSGhyVzI4Krckin3BiHEom_BqwBQFErzn2RoRo2It3xsMni4rNODGuLqnBaSmqOWGMdJDrEfI8mvO8BqEV0Yz8bw9GrfvLu_npwR_fO4R1H2tibNX3EVSmb-_6GFbUx3SYvdVh-brXfujU7Qr-ApCh76U
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFH64Ui8uVbGuOXgSgm0ymUXwUEuL1TaIFOwtdCYTbLGt2Cj47503aVoreBFPIduDvFnyve17AOdBXElk4JfdXkKMgSKJ5wqfxm6szAEDc562JK4tFoa82xUPS1DLa2EyfoiZww1Xht2vcYGjQzpv2YO0oXooB8bCw3gusqgtwyoxeAP7Nzw1w3meB7dWl3W0kAoX01glyrj8IWEBZf7MkZwFShdhrP0PNbb-5Qu2YXMKQ51qNm92YEmPirCeNab8LEKhlveB24XrIa06j2HVwWbTn1nq3JWDZSnmCtYN9yfDiZOOnW-lXM7rOMU0pN7LHnQa9U7t1p02XXAHvieYm1DOezTWXhJQwWlZ0iDmmlDFmOS-4lpoA5m0rwLGEumrikgEVTIWWhFOub8PK6PxSB-AQxNBAlHGaiKzUwgppDTWk_IDSUQvYXEJjnNtR9OFM4k8wonBlEx4JWALIxC9ZvQbERJiL94Z9Z8tMTbjxKBdUoKLfKzmgtHYQa1HqPNorvMSBHaMZuJ_ezCqt2_u5qeHf3zvDAq3nXYrajXD-yPY8DBFxiaBH8NK-vauT2BNfaT9ydupncZfCP3yIw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8NAEB5qPV88qmK1ah58EoJtstlD8KHWFo9apFTwLXQ3u1ixB7YK_nt3crRW8EV8CrkGMrO7mdmZ-T6AkyCqGBn4ZbdriA1QJPFc4dPIjZQ9YGLO0zGIa5O1WvzpSTzkoJb1wiT4ENMNN5wZ8XqNE1yPIpNR9iBsqO7LFxvhYT4XUdQWYJEgl0weFq_ajcfmrNKDx3FXvNVCKlyk2UqUcvZDxpyf-bNKcpoqnXdk4z9RY-NfvmET1lNH1KkmI2cLcnpQgOWEmvKzAKu1jAluGy76tOq0W1UH6aY_k-K5cwcbU-wV7BzujftjZzJ0vjVzOaPhBAuRuq870GnUO7VrN6VdcF98TzDXUM67NNKeCajgtCxpEHFNqGJMcl9xLbR1mrSvAsaM9FVFGEGVjIRWhFPu70J-MBzoPXCoEdYiZewnsmuFkEJKGz8pP5BEdA2LilDKtB2mU2cceoQT61Uy4RWBzVkgHCUAHCFCYs_fGfSeY2hsxon1d0kRTjNbzQRjuINaD1Hn4UznRQhiG03F__ZgWL-_vJ2d7v_xvWNYebhqhM2b1t0BrHlYIxNXgZcgP3l714ewpD4mvfHbUTqOvwCJzvLM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=m6A+RNA+methylation%3A+from+mechanisms+to+therapeutic+potential&rft.jtitle=The+EMBO+journal&rft.au=He%2C+P+Cody&rft.au=He%2C+Chuan&rft.date=2021-02-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=40&rft.issue=3&rft_id=info:doi/10.15252%2Fembj.2020105977&rft.externalDocID=10_15252_embj_2020105977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon