Improving the repeatability of two-rate model parameter estimations by using autoencoder networks

The adaptive changes elicited in visuomotor adaptation experiments are usually well explained at group level by two-rate models (Smith et al., 2006), but parameters fitted to individuals show considerable variance. Data cleaning can mitigate this problem, but the assumption of smoothness can be prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in brain research Jg. 249; S. 189
Hauptverfasser: Ozdemir, Murat C, Eggert, Thomas, Straube, Andreas
Format: Journal Article
Sprache:Englisch
Japanisch
Veröffentlicht: Netherlands 2019
Schlagworte:
ISSN:1875-7855, 1875-7855
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adaptive changes elicited in visuomotor adaptation experiments are usually well explained at group level by two-rate models (Smith et al., 2006), but parameters fitted to individuals show considerable variance. Data cleaning can mitigate this problem, but the assumption of smoothness can be problematic due to fast adaptive changes with discontinuous derivatives. In this paper, we collected time-series data from an experimental paradigm involving repeated training and investigated the effect of various cleaning methods, including an autoencoder network (AE), on the parameter estimation. We compared changes in the fitted parameters across different methods and across training repetitions. The results suggest that AE performed best overall, without introducing an underestimation bias on b like moving average or piecewise polynomials, and that it reduced the within-subject variance overall and especially that of the fast retention rate a by >50%.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1875-7855
1875-7855
DOI:10.1016/bs.pbr.2019.04.035