Functional difference equations and eigenfunctions of a Schrödinger operator with δ' -interaction on a circular conical surface

Eigenfunctions and their asymptotic behaviour at large distances for the Laplace operator with singular potential, the support of which is on a circular conical surface in three-dimensional space, are studied. Within the framework of incomplete separation of variables an integral representation of t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Ročník 476; číslo 2241; s. 20200179
Hlavný autor: Lyalinov, Mikhail A
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.09.2020
ISSN:1364-5021
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Eigenfunctions and their asymptotic behaviour at large distances for the Laplace operator with singular potential, the support of which is on a circular conical surface in three-dimensional space, are studied. Within the framework of incomplete separation of variables an integral representation of the Kontorovich-Lebedev (KL) type for the eigenfunctions is obtained in terms of solution of an auxiliary functional difference equation with a meromorphic potential. Solutions of the functional difference equation are studied by reducing it to an integral equation with a bounded self-adjoint integral operator. To calculate the leading term of the asymptotics of eigenfunctions, the KL integral representation is transformed to a Sommerfeld-type integral which is well adapted to application of the saddle point technique. Outside a small angular vicinity of the so-called singular directions the asymptotic expression takes on an elementary form of exponent decreasing in distance. However, in an asymptotically small neighbourhood of singular directions, the leading term of the asymptotics also depends on a special function closely related to the function of parabolic cylinder (Weber function).Eigenfunctions and their asymptotic behaviour at large distances for the Laplace operator with singular potential, the support of which is on a circular conical surface in three-dimensional space, are studied. Within the framework of incomplete separation of variables an integral representation of the Kontorovich-Lebedev (KL) type for the eigenfunctions is obtained in terms of solution of an auxiliary functional difference equation with a meromorphic potential. Solutions of the functional difference equation are studied by reducing it to an integral equation with a bounded self-adjoint integral operator. To calculate the leading term of the asymptotics of eigenfunctions, the KL integral representation is transformed to a Sommerfeld-type integral which is well adapted to application of the saddle point technique. Outside a small angular vicinity of the so-called singular directions the asymptotic expression takes on an elementary form of exponent decreasing in distance. However, in an asymptotically small neighbourhood of singular directions, the leading term of the asymptotics also depends on a special function closely related to the function of parabolic cylinder (Weber function).
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1364-5021
DOI:10.1098/rspa.2020.0179