The costs and benefits of estimating T1 of tissue alongside cerebral blood flow and arterial transit time in pseudo‐continuous arterial spin labeling
Multi‐post‐labeling‐delay pseudo‐continuous arterial spin labeling (multi‐PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi‐PLD PCASL data is a non‐linear inverse problem, which...
Uložené v:
| Vydané v: | NMR in biomedicine Ročník 33; číslo 12; s. e4182 - n/a |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Wiley Subscription Services, Inc
01.12.2020
|
| Predmet: | |
| ISSN: | 0952-3480, 1099-1492, 1099-1492 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Multi‐post‐labeling‐delay pseudo‐continuous arterial spin labeling (multi‐PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi‐PLD PCASL data is a non‐linear inverse problem, which is commonly tackled by fitting the single‐compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T1t is fixed to a population average. This approach can cause CBF quantification errors, as T1t can vary significantly inter‐ and intra‐subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T1t, the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi‐PLD PCASL data can be expected when using the two‐parameter estimator with a fixed T1t value between population averages of T1t and the longitudinal relaxation time of blood T1b. |
|---|---|
| AbstractList | Multi-post-labeling-delay pseudo-continuous arterial spin labeling (multi-PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi-PLD PCASL data is a non-linear inverse problem, which is commonly tackled by fitting the single-compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T1t is fixed to a population average. This approach can cause CBF quantification errors, as T1t can vary significantly inter- and intra-subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T1t , the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi-PLD PCASL data can be expected when using the two-parameter estimator with a fixed T1t value between population averages of T1t and the longitudinal relaxation time of blood T1b .Multi-post-labeling-delay pseudo-continuous arterial spin labeling (multi-PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi-PLD PCASL data is a non-linear inverse problem, which is commonly tackled by fitting the single-compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T1t is fixed to a population average. This approach can cause CBF quantification errors, as T1t can vary significantly inter- and intra-subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T1t , the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi-PLD PCASL data can be expected when using the two-parameter estimator with a fixed T1t value between population averages of T1t and the longitudinal relaxation time of blood T1b . Multi‐post‐labeling‐delay pseudo‐continuous arterial spin labeling (multi‐PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi‐PLD PCASL data is a non‐linear inverse problem, which is commonly tackled by fitting the single‐compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T1t is fixed to a population average. This approach can cause CBF quantification errors, as T1t can vary significantly inter‐ and intra‐subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T1t, the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi‐PLD PCASL data can be expected when using the two‐parameter estimator with a fixed T1t value between population averages of T1t and the longitudinal relaxation time of blood T1b. |
| Author | Clement, Patricia Dekker, Arnold J. Achten, Eric Sijbers, Jan Bladt, Piet |
| Author_xml | – sequence: 1 givenname: Piet orcidid: 0000-0002-1294-9948 surname: Bladt fullname: Bladt, Piet email: piet.bladt@uantwerpen.be organization: University of Antwerp – sequence: 2 givenname: Arnold J. surname: Dekker fullname: Dekker, Arnold J. organization: Delft University of Technology – sequence: 3 givenname: Patricia surname: Clement fullname: Clement, Patricia organization: Ghent University – sequence: 4 givenname: Eric surname: Achten fullname: Achten, Eric organization: Ghent University – sequence: 5 givenname: Jan orcidid: 0000-0003-4225-2487 surname: Sijbers fullname: Sijbers, Jan organization: University of Antwerp |
| BookMark | eNpdkUtuFDEQhi0UJCYBiSNYYsOmEz_b7SVEvKQAm9lbdrscPPLYg92tKLscgR334yS4CRISq1KVvvrr8Z-js1wyIPSSkktKCLvK7ngp6MSeoB0lWg9UaHaGdkRLNnAxkWfovLUDIWQSnO3Qz_03wHNpS8M2e-wgQ4g9KQFDW-LRLjHf4j3dCktsbQVsU8m3LfreBxVctQm7VIrHIZW7Pyq2LlBjry_V5haX3nkEHDM-NVh9-fXwYy65C69lbf_gdupEsg5SH_kcPQ02NXjxN16g_ft3--uPw83XD5-u39wMBzZqNvjZBRWotHYGD9qRSQchAYRSyodRwKwc7yBRRLuJTYGPTCju1eTt7CW_QK8fZU-1fF_7xeYY2wwp2Qx9OcM4lZLJceIdffUfeihrzX05w4RUVEs6boLDI3UXE9ybU-0vrPeGErO5Y7o7ZnPHfHn7eYv8Nzc3ibI |
| ContentType | Journal Article |
| Copyright | 2019 The Authors. published by John Wiley & Sons Ltd 2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2019 The Authors. published by John Wiley & Sons Ltd – notice: 2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. |
| DBID | 24P 7QO 8FD FR3 K9. P64 7X8 |
| DOI | 10.1002/nbm.4182 |
| DatabaseName | Wiley Online Library Open Access Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Chemistry Physics |
| EISSN | 1099-1492 |
| EndPage | n/a |
| ExternalDocumentID | NBM4182 |
| Genre | article |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT 7QO 8FD AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY FR3 K9. O8X P64 7X8 |
| ID | FETCH-LOGICAL-j2692-dcbf7f15aacede9b089f45ee4777df64ec7b36920709b828f362473d78dacd53 |
| IEDL.DBID | 24P |
| ISSN | 0952-3480 1099-1492 |
| IngestDate | Fri Jul 11 16:34:38 EDT 2025 Sat Nov 29 14:23:43 EST 2025 Wed Jan 22 16:31:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-j2692-dcbf7f15aacede9b089f45ee4777df64ec7b36920709b828f362473d78dacd53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1294-9948 0000-0003-4225-2487 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4182 |
| PQID | 2457195165 |
| PQPubID | 2029982 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2315525683 proquest_journals_2457195165 wiley_primary_10_1002_nbm_4182_NBM4182 |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | NMR in biomedicine |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2013; 69 2013; 66 2015; 73 2010 2007; 243 2002; 13 2000; 44 2014; 27 2008; 59 2018; 80 2007 2005 2002 1998; 40 2012; 35 2014; 40 1996; 16 2016; 36 2010; 63 2016; 77 2004; 52 2018; 39 2002; 48 1998; 17 2005; 19 2019; 81 2006; 83 2010; 29 2017; 77 2015; 20 2017; 35 2017 2005; 54 1997; 16 2008; 21 2016 1999; 211 2013 2012; 69 2012; 67 1992; 89 1992; 23 2008; 60 2018; 38 2014; 34 1979; 9 2014; 32 2018; 79 |
| References_xml | – volume: 73 start-page: 102 issue: 1 year: 2015 end-page: 116 article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med – volume: 211 start-page: 489 issue: 2 year: 1999 end-page: 495 article-title: T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: Relation to iron content publication-title: Radiology – start-page: 2164 year: 2013 – volume: 19 start-page: 231 issue: 1 year: 2005 end-page: 240 article-title: Quantifying test‐retest reliability using the intraclass correlation coefficient and the SEM publication-title: J Strength Cond Res – volume: 89 start-page: 212 year: 1992 end-page: 216 article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water publication-title: Proc Natl Acad Sci USA – year: 2005 – volume: 34 start-page: 1373 issue: 8 year: 2014 end-page: 1380 article-title: Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging publication-title: J Cereb Blood Flow Metab – volume: 80 start-page: 802 issue: 2 year: 2018 end-page: 813 article-title: Diffusion kurtosis imaging with free water elimination: A bayesian estimation approach publication-title: Magn Reson Med – volume: 39 start-page: 1432 issue: 8 year: 2018 end-page: 1438 article-title: Brain perfusion measurements using multidelay arterial spin‐labeling are systematically biased by the number of delays publication-title: Am J Neuroradiol – volume: 67 start-page: 1275 issue: 5 year: 2012 end-page: 1284 article-title: A two‐stage approach for measuring vascular water exchange and arterial transit time by diffusion‐weighted perfusion MRI publication-title: Magn Reson Med – start-page: 880 year: 2010 end-page: 883 – volume: 69 start-page: 127 issue: 1 year: 2012 end-page: 136 article-title: On the inherent precision of mcDESPOT publication-title: Magn Reson Med – volume: 13 start-page: 1335 year: 2002 end-page: 1340 article-title: Measurements of water diffusion and T1 values in peritumoural oedematous brain publication-title: Neuroreport – volume: 38 start-page: 1461 issue: 9 year: 2018 end-page: 1480 article-title: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow publication-title: J Cereb Blood Flow Metab – volume: 40 start-page: 1300 issue: 6 year: 2014 end-page: 1309 article-title: Quantification of cerebral blood flow in healthy volunteers and type 1 diabetic patients: Comparison of MRI arterial spin labeling and [15O]H2O positron emission tomography (PET) publication-title: J Magn Reson Imaging – volume: 48 start-page: 242 issue: 2 year: 2002 end-page: 254 article-title: Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla publication-title: Magn Reson Med – volume: 77 start-page: 2296 issue: 6 year: 2016 end-page: 2302 article-title: Fast measurement of blood T1 in the human carotid artery at 3T: Accuracy, precision, and reproducibility publication-title: Magn Reson Med – volume: 40 start-page: 383 issue: 3 year: 1998 end-page: 396 article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling publication-title: Magn Reson Med – volume: 36 start-page: 842 issue: 5 year: 2016 end-page: 861 article-title: Comparison of cerebral blood flow measurement with [15O]‐water positron emission tomography and arterial spin labeling magnetic resonance imaging: A systematic review publication-title: J Cereb Blood Flow Metab – volume: 27 start-page: 116 issue: 2 year: 2014 end-page: 128 article-title: 3D whole‐brain perfusion quantification using pseudo‐continuous arterial spin labeling MRI at multiple post‐labeling delays: Accounting for both arterial transit time and impulse response function publication-title: NMR Biomed – volume: 13 start-page: 889 issue: 3 year: 2002 end-page: 903 article-title: Analysis of generalized pattern searches publication-title: SIAM J Optim – volume: 20 start-page: 184 issue: 1 year: 2015 end-page: 197 article-title: Spatially variant noise estimation in MRI: A homomorphic approach publication-title: Med Image Anal – volume: 83 start-page: 248 year: 2006 end-page: 65 article-title: A hybrid approach for efficient and robust estimation in biochemical pathways publication-title: BioSystems – volume: 9 start-page: 62 issue: 1 year: 1979 end-page: 66 article-title: A threshold selection method from gray‐level histograms publication-title: IEEE Trans Syst Man Cybern – volume: 77 start-page: 1841 issue: 5 year: 2017 end-page: 1852 article-title: Measuring the labeling efficiency of pseudocontinuous arterial spin labeling publication-title: Magn Reson Med – volume: 59 start-page: 826 issue: 4 year: 2008 end-page: 834 article-title: Optimal design of pulsed arterial spin labeling MRI experiments publication-title: Magn Reson Med – volume: 44 start-page: 440 issue: 3 year: 2000 end-page: 449 article-title: Effect of restricted water exchange on cerebral blood flow values calculated with arterial spin tagging: A theoretical investigation publication-title: Magn Reson Med – volume: 243 start-page: 796 issue: 3 year: 2007 end-page: 803 article-title: Low spin‐lock field T1 relaxation in the rotating frame as a sensitive MR imaging marker for gene therapy treatment response in rat glioma publication-title: Radiology – year: 2007 – volume: 23 start-page: 37 issue: 1 year: 1992 end-page: 45 article-title: Perfusion imaging publication-title: Magn Reson Med – volume: 59 start-page: 316 issue: 2 year: 2008 end-page: 325 article-title: Modeling and optimization of look‐locker spin labeling for measuring perfusion and transit time changes in activation studies taking into account arterial blood volume publication-title: Magn Reson Med – volume: 27 start-page: 1387 issue: 11 year: 2014 end-page: 1396 article-title: Evaluation of segmented 3D acquisition schemes for whole‐brain high‐resolution arterial spin labeling at 3T publication-title: NMR Biomed – volume: 79 start-page: 3249 issue: 6 year: 2018 end-page: 3255 article-title: Fisher information and Cramér‐Rao lower bound for experimental design in parallel imaging publication-title: Magn Reson Imaging – volume: 21 start-page: 427 issue: 5 year: 2008 end-page: 436 article-title: Bloodbrain barrier permeability to manganese and to Gd‐DOTA in a rat model of transient cerebral ischaemia publication-title: NMR Biomed – start-page: 511 year: 2016 end-page: 518 – volume: 29 start-page: 819 issue: 3 year: 2010 end-page: 829 article-title: Optimal experimental design for diffusion kurtosis imaging publication-title: IEEE Trans Med Imag – volume: 16 start-page: 1236 issue: 6 year: 1996 end-page: 1249 article-title: Reduced transit‐time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow publication-title: J Cereb Blood Flow Metab – volume: 54 start-page: 491 issue: 2 year: 2005 end-page: 498 article-title: Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements publication-title: Magn Reson Med – volume: 66 start-page: 662 year: 2013 end-page: 671 article-title: Comparison of 2D and 3D single‐shot ASL perfusion fMRI sequences publication-title: NeuroImage – volume: 17 start-page: 463 issue: 3 year: 1998 end-page: 468 article-title: Design and construction of a realistic digital brain phantom publication-title: IEEE Trans Med Imag – volume: 81 start-page: 2474 issue: 4 year: 2019 end-page: 2488 article-title: A general framework for optimizing arterial spin labeling MRI experiments publication-title: Magn Reson Med – volume: 35 start-page: 1290 issue: 6 year: 2012 end-page: 1299 article-title: Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography publication-title: J Magn Reson Imaging – year: 2002 – volume: 52 start-page: 679 issue: 3 year: 2004 end-page: 682 article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla publication-title: Magn Reson Med – volume: 69 start-page: 563 issue: 2 year: 2013 end-page: 570 article-title: Modeling dispersion in arterial spin labeling: Validation using dynamic angiographic measurements publication-title: Magn Reson Med – volume: 16 start-page: 187 issue: 2 year: 1997 end-page: 198 article-title: Multimodality image registration by maximization of mutual information publication-title: IEEE Trans Med Imag – volume: 63 start-page: 374 issue: 2 year: 2010 end-page: 384 article-title: Arterial transit time effects in pulsed arterial spin labeling CBF mapping: Insight from a PET and MR study in normal human subjects publication-title: Magn Reson Med – year: 2017 – volume: 60 start-page: 1488 issue: 6 year: 2008 end-page: 1497 article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields publication-title: Magn Reson Med – volume: 35 start-page: 69 issue: Supplement C year: 2017 end-page: 80 article-title: What are normal relaxation times of tissues at 3 T? publication-title: Magn Reson Imaging – volume: 77 start-page: 1656 issue: 4 year: 2017 end-page: 1664 article-title: Impact of tissue T1 on perfusion measurement with arterial spin labeling publication-title: Magn Reson Med – volume: 32 start-page: 281 issue: 3 year: 2014 end-page: 290 article-title: Noise estimation in parallel MRI: GRAPPA and SENSE publication-title: Magn Reson Imaging – volume: 48 start-page: 27 issue: 1 year: 2002 end-page: 41 article-title: Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: Accounting for capillary water permeability publication-title: Magn Reson Med |
| SSID | ssj0008432 |
| Score | 2.3267155 |
| Snippet | Multi‐post‐labeling‐delay pseudo‐continuous arterial spin labeling (multi‐PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as... Multi-post-labeling-delay pseudo-continuous arterial spin labeling (multi-PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as... |
| SourceID | proquest wiley |
| SourceType | Aggregation Database Publisher |
| StartPage | e4182 |
| SubjectTerms | Bias Biological products Blood flow Cerebral blood flow Cost benefit analysis Design of experiments Design optimization Estimation experimental design Experiments Inverse problems Labeling Mathematical models optimization Parameter estimation Perfusion perfusion models pseudo‐continuous arterial spin labeling Relaxation time Simulation Spin labeling Transit time |
| Title | The costs and benefits of estimating T1 of tissue alongside cerebral blood flow and arterial transit time in pseudo‐continuous arterial spin labeling |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4182 https://www.proquest.com/docview/2457195165 https://www.proquest.com/docview/2315525683 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1492 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008432 issn: 0952-3480 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLq8LjwKisKyMhLiFTRwnto-wUHHYrVaoSL1Ffq6KilM1KVz5Cdz4f_wSxm5alhsSl0RJJlGcefhzPP4G4GXJqVaOygx9R2VM2zqT3tBMVspKqY3KfaLMP-PTqZjP5cWQVRnXwmz5IfY_3KJnpHgdHVzp7uQKaaj-8pohOr4Oh0VRili2gbKLfRQWLBUnQwRBs5KJfEc8m9OT3Z1_gcqr0DT1LZN7__NW9-HugCjJm60JPIBrLozg9umukNsIbp0P8-cjuJkSPk33EH6ifRDTdn1HVLBEY8jzCzxoPYm8GxHHhksyK-KJPimHqGUbLmN1T2LcOs43L0lKeyd-2X5LT0n5oWjQpI894KInsXI9WQSy6tzGtr--_4iZ8YuwaTfdH-FuhRJojGll_COYTd7PTj9kQ5GG7DOtJc2s0Z77olLKOOukzoX0rHKOcc6tr5kzXJcoiKFFahzeeewxGS8tF1YZW5WP4SC0wT0BbKmoVC0Ntd4xnVuhhBVlQamtBYIuNYajnbqawdG6hrKKF4gS62oML_aX8QPHeQ8VHLanQQhbVQjtRDmGV0l5zWpL5dFsSZtpg2protqa6dvzuH_6r4LP4A6NI_CU4HIEB_16457DDfMVVbM-TiaJWz4Xx3D47uPk09lvVobrzw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tC-xy4VEWUVjASIhb2NSxY1ucYMVqEW21hx72Fvm5KipJ1aRw5Sdw4__xSxi7TVluSJyiJJMozrw-e8YzAK8KQY32VGWoOzpjxpWZCpZmimunlLE6D6lk_lhMp_LyUl3swdt-L8ymPsRuwS1qRrLXUcHjgvTJtaqh5ssbhvD4Btxk6GSikFN2sTPDkqXuZAghaFYwmfeVZ3N60j_5F6q8jk2Tczm791-fdR_ubjElebcRggew5-sBHJ72rdwGcDDZRtAHcDulfNr2IfxECSG2abuW6NoRg0YvzPGkCSRW3ohItr4is1G80CX2EL1o6qvY35NYv4oR5wVJie8kLJpv6S0pQxRFmnTRB847EnvXk3lNlq1fu-bX9x8xN35er5t1-4e4XSIFimPaG38Es7MPs9PzbNumIftMS0UzZ00QYcS1tt55ZXKpAuPeMyGECyXzVpgCCdG4KIMTvIA-k4nCCem0dbx4BPt1U_vHgCOVXJfKUhc8M7mTWjpZjCh1pUTYpYdw3POr2qpaW1HGxQhxYsmH8HJ3G39wjHzo2uN4KgSxnCO4k8UQXifuVctNMY9qU7aZVsi2KrKtmr6fxOOTfyV8AYfns8m4Gn-cfnoKd2icj6d0l2PY71Zr_wxu2a_IptXzJJ-_AWj17TI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXVi48CggCgsYCXELmzpObIsT7FKB6FYrVKS9RX6uikpSNSlc-Qnc-H_8EsZuUpYbEqcoySSyMw9_jsffADzPONXKUZmg76iEaVsk0huayFxZKbVRqY-U-VM-m4nzc3m2B6_6vTBbfojdD7fgGTFeBwd3K-uPLrGG6i8vGcLjK7DPQg2ZAeyffJx8mu4CsWCxPhmCCJpkTKQ992xKj_pn_8KVl9FpHF4mt_6rYbfhZocqyeutGdyBPVcN4fpxX8xtCAen3Rr6EK7FpE_T3IWfaCPE1E3bEFVZojHs-QWe1J4E7o2AZasLMh-HC21UEFHLuroIFT6Jceuw5rwkMfWd-GX9Lb4l5oiiUZM2jIKLloTq9WRRkVXjNrb-9f1HyI5fVJt60_wRblYogQYZd8ffg_nk7fz4XdIVakg-00LSxBrtuR_nShlnndSpkJ7lzjHOufUFc4brDAUxvEiNUzyPoybjmeXCKmPz7D4MqrpyDwB7KnJVSEOtd0ynVihhRTam1BYCgZcawWGvr7JztqakLOdjRIpFPoJnu9v4gcPah6oc9qdEGJvnCO9ENoIXUXvlakvnUW6Jm2mJaiuD2srZm9NwfPivgk_h4OxkUk7fzz48ghs0TMhjvsshDNr1xj2Gq-Yramn9pDPQ31zE7kg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+costs+and+benefits+of+estimating+T1+of+tissue+alongside+cerebral+blood+flow+and+arterial+transit+time+in+pseudo%E2%80%90continuous+arterial+spin+labeling&rft.jtitle=NMR+in+biomedicine&rft.au=Bladt%2C+Piet&rft.au=Dekker%2C+Arnold+J.&rft.au=Clement%2C+Patricia&rft.au=Achten%2C+Eric&rft.date=2020-12-01&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=33&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fnbm.4182&rft.externalDBID=10.1002%252Fnbm.4182&rft.externalDocID=NBM4182 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon |