The costs and benefits of estimating T1 of tissue alongside cerebral blood flow and arterial transit time in pseudo‐continuous arterial spin labeling

Multi‐post‐labeling‐delay pseudo‐continuous arterial spin labeling (multi‐PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi‐PLD PCASL data is a non‐linear inverse problem, which...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:NMR in biomedicine Ročník 33; číslo 12; s. e4182 - n/a
Hlavní autori: Bladt, Piet, Dekker, Arnold J., Clement, Patricia, Achten, Eric, Sijbers, Jan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Wiley Subscription Services, Inc 01.12.2020
Predmet:
ISSN:0952-3480, 1099-1492, 1099-1492
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Multi‐post‐labeling‐delay pseudo‐continuous arterial spin labeling (multi‐PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi‐PLD PCASL data is a non‐linear inverse problem, which is commonly tackled by fitting the single‐compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T1t is fixed to a population average. This approach can cause CBF quantification errors, as T1t can vary significantly inter‐ and intra‐subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T1t, the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi‐PLD PCASL data can be expected when using the two‐parameter estimator with a fixed T1t value between population averages of T1t and the longitudinal relaxation time of blood T1b.
AbstractList Multi-post-labeling-delay pseudo-continuous arterial spin labeling (multi-PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi-PLD PCASL data is a non-linear inverse problem, which is commonly tackled by fitting the single-compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T1t is fixed to a population average. This approach can cause CBF quantification errors, as T1t can vary significantly inter- and intra-subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T1t , the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi-PLD PCASL data can be expected when using the two-parameter estimator with a fixed T1t value between population averages of T1t and the longitudinal relaxation time of blood T1b .Multi-post-labeling-delay pseudo-continuous arterial spin labeling (multi-PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi-PLD PCASL data is a non-linear inverse problem, which is commonly tackled by fitting the single-compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T1t is fixed to a population average. This approach can cause CBF quantification errors, as T1t can vary significantly inter- and intra-subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T1t , the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi-PLD PCASL data can be expected when using the two-parameter estimator with a fixed T1t value between population averages of T1t and the longitudinal relaxation time of blood T1b .
Multi‐post‐labeling‐delay pseudo‐continuous arterial spin labeling (multi‐PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi‐PLD PCASL data is a non‐linear inverse problem, which is commonly tackled by fitting the single‐compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T1t is fixed to a population average. This approach can cause CBF quantification errors, as T1t can vary significantly inter‐ and intra‐subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T1t, the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi‐PLD PCASL data can be expected when using the two‐parameter estimator with a fixed T1t value between population averages of T1t and the longitudinal relaxation time of blood T1b.
Author Clement, Patricia
Dekker, Arnold J.
Achten, Eric
Sijbers, Jan
Bladt, Piet
Author_xml – sequence: 1
  givenname: Piet
  orcidid: 0000-0002-1294-9948
  surname: Bladt
  fullname: Bladt, Piet
  email: piet.bladt@uantwerpen.be
  organization: University of Antwerp
– sequence: 2
  givenname: Arnold J.
  surname: Dekker
  fullname: Dekker, Arnold J.
  organization: Delft University of Technology
– sequence: 3
  givenname: Patricia
  surname: Clement
  fullname: Clement, Patricia
  organization: Ghent University
– sequence: 4
  givenname: Eric
  surname: Achten
  fullname: Achten, Eric
  organization: Ghent University
– sequence: 5
  givenname: Jan
  orcidid: 0000-0003-4225-2487
  surname: Sijbers
  fullname: Sijbers, Jan
  organization: University of Antwerp
BookMark eNpdkUtuFDEQhi0UJCYBiSNYYsOmEz_b7SVEvKQAm9lbdrscPPLYg92tKLscgR334yS4CRISq1KVvvrr8Z-js1wyIPSSkktKCLvK7ngp6MSeoB0lWg9UaHaGdkRLNnAxkWfovLUDIWQSnO3Qz_03wHNpS8M2e-wgQ4g9KQFDW-LRLjHf4j3dCktsbQVsU8m3LfreBxVctQm7VIrHIZW7Pyq2LlBjry_V5haX3nkEHDM-NVh9-fXwYy65C69lbf_gdupEsg5SH_kcPQ02NXjxN16g_ft3--uPw83XD5-u39wMBzZqNvjZBRWotHYGD9qRSQchAYRSyodRwKwc7yBRRLuJTYGPTCju1eTt7CW_QK8fZU-1fF_7xeYY2wwp2Qx9OcM4lZLJceIdffUfeihrzX05w4RUVEs6boLDI3UXE9ybU-0vrPeGErO5Y7o7ZnPHfHn7eYv8Nzc3ibI
ContentType Journal Article
Copyright 2019 The Authors. published by John Wiley & Sons Ltd
2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2019 The Authors. published by John Wiley & Sons Ltd
– notice: 2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
DBID 24P
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/nbm.4182
DatabaseName Wiley Online Library Open Access
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage n/a
ExternalDocumentID NBM4182
Genre article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
7QO
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
FR3
K9.
O8X
P64
7X8
ID FETCH-LOGICAL-j2692-dcbf7f15aacede9b089f45ee4777df64ec7b36920709b828f362473d78dacd53
IEDL.DBID 24P
ISSN 0952-3480
1099-1492
IngestDate Fri Jul 11 16:34:38 EDT 2025
Sat Nov 29 14:23:43 EST 2025
Wed Jan 22 16:31:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j2692-dcbf7f15aacede9b089f45ee4777df64ec7b36920709b828f362473d78dacd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1294-9948
0000-0003-4225-2487
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4182
PQID 2457195165
PQPubID 2029982
PageCount 17
ParticipantIDs proquest_miscellaneous_2315525683
proquest_journals_2457195165
wiley_primary_10_1002_nbm_4182_NBM4182
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle NMR in biomedicine
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 69
2013; 66
2015; 73
2010
2007; 243
2002; 13
2000; 44
2014; 27
2008; 59
2018; 80
2007
2005
2002
1998; 40
2012; 35
2014; 40
1996; 16
2016; 36
2010; 63
2016; 77
2004; 52
2018; 39
2002; 48
1998; 17
2005; 19
2019; 81
2006; 83
2010; 29
2017; 77
2015; 20
2017; 35
2017
2005; 54
1997; 16
2008; 21
2016
1999; 211
2013
2012; 69
2012; 67
1992; 89
1992; 23
2008; 60
2018; 38
2014; 34
1979; 9
2014; 32
2018; 79
References_xml – volume: 73
  start-page: 102
  issue: 1
  year: 2015
  end-page: 116
  article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
– volume: 211
  start-page: 489
  issue: 2
  year: 1999
  end-page: 495
  article-title: T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: Relation to iron content
  publication-title: Radiology
– start-page: 2164
  year: 2013
– volume: 19
  start-page: 231
  issue: 1
  year: 2005
  end-page: 240
  article-title: Quantifying test‐retest reliability using the intraclass correlation coefficient and the SEM
  publication-title: J Strength Cond Res
– volume: 89
  start-page: 212
  year: 1992
  end-page: 216
  article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water
  publication-title: Proc Natl Acad Sci USA
– year: 2005
– volume: 34
  start-page: 1373
  issue: 8
  year: 2014
  end-page: 1380
  article-title: Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging
  publication-title: J Cereb Blood Flow Metab
– volume: 80
  start-page: 802
  issue: 2
  year: 2018
  end-page: 813
  article-title: Diffusion kurtosis imaging with free water elimination: A bayesian estimation approach
  publication-title: Magn Reson Med
– volume: 39
  start-page: 1432
  issue: 8
  year: 2018
  end-page: 1438
  article-title: Brain perfusion measurements using multidelay arterial spin‐labeling are systematically biased by the number of delays
  publication-title: Am J Neuroradiol
– volume: 67
  start-page: 1275
  issue: 5
  year: 2012
  end-page: 1284
  article-title: A two‐stage approach for measuring vascular water exchange and arterial transit time by diffusion‐weighted perfusion MRI
  publication-title: Magn Reson Med
– start-page: 880
  year: 2010
  end-page: 883
– volume: 69
  start-page: 127
  issue: 1
  year: 2012
  end-page: 136
  article-title: On the inherent precision of mcDESPOT
  publication-title: Magn Reson Med
– volume: 13
  start-page: 1335
  year: 2002
  end-page: 1340
  article-title: Measurements of water diffusion and T1 values in peritumoural oedematous brain
  publication-title: Neuroreport
– volume: 38
  start-page: 1461
  issue: 9
  year: 2018
  end-page: 1480
  article-title: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow
  publication-title: J Cereb Blood Flow Metab
– volume: 40
  start-page: 1300
  issue: 6
  year: 2014
  end-page: 1309
  article-title: Quantification of cerebral blood flow in healthy volunteers and type 1 diabetic patients: Comparison of MRI arterial spin labeling and [15O]H2O positron emission tomography (PET)
  publication-title: J Magn Reson Imaging
– volume: 48
  start-page: 242
  issue: 2
  year: 2002
  end-page: 254
  article-title: Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla
  publication-title: Magn Reson Med
– volume: 77
  start-page: 2296
  issue: 6
  year: 2016
  end-page: 2302
  article-title: Fast measurement of blood T1 in the human carotid artery at 3T: Accuracy, precision, and reproducibility
  publication-title: Magn Reson Med
– volume: 40
  start-page: 383
  issue: 3
  year: 1998
  end-page: 396
  article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling
  publication-title: Magn Reson Med
– volume: 36
  start-page: 842
  issue: 5
  year: 2016
  end-page: 861
  article-title: Comparison of cerebral blood flow measurement with [15O]‐water positron emission tomography and arterial spin labeling magnetic resonance imaging: A systematic review
  publication-title: J Cereb Blood Flow Metab
– volume: 27
  start-page: 116
  issue: 2
  year: 2014
  end-page: 128
  article-title: 3D whole‐brain perfusion quantification using pseudo‐continuous arterial spin labeling MRI at multiple post‐labeling delays: Accounting for both arterial transit time and impulse response function
  publication-title: NMR Biomed
– volume: 13
  start-page: 889
  issue: 3
  year: 2002
  end-page: 903
  article-title: Analysis of generalized pattern searches
  publication-title: SIAM J Optim
– volume: 20
  start-page: 184
  issue: 1
  year: 2015
  end-page: 197
  article-title: Spatially variant noise estimation in MRI: A homomorphic approach
  publication-title: Med Image Anal
– volume: 83
  start-page: 248
  year: 2006
  end-page: 65
  article-title: A hybrid approach for efficient and robust estimation in biochemical pathways
  publication-title: BioSystems
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  end-page: 66
  article-title: A threshold selection method from gray‐level histograms
  publication-title: IEEE Trans Syst Man Cybern
– volume: 77
  start-page: 1841
  issue: 5
  year: 2017
  end-page: 1852
  article-title: Measuring the labeling efficiency of pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
– volume: 59
  start-page: 826
  issue: 4
  year: 2008
  end-page: 834
  article-title: Optimal design of pulsed arterial spin labeling MRI experiments
  publication-title: Magn Reson Med
– volume: 44
  start-page: 440
  issue: 3
  year: 2000
  end-page: 449
  article-title: Effect of restricted water exchange on cerebral blood flow values calculated with arterial spin tagging: A theoretical investigation
  publication-title: Magn Reson Med
– volume: 243
  start-page: 796
  issue: 3
  year: 2007
  end-page: 803
  article-title: Low spin‐lock field T1 relaxation in the rotating frame as a sensitive MR imaging marker for gene therapy treatment response in rat glioma
  publication-title: Radiology
– year: 2007
– volume: 23
  start-page: 37
  issue: 1
  year: 1992
  end-page: 45
  article-title: Perfusion imaging
  publication-title: Magn Reson Med
– volume: 59
  start-page: 316
  issue: 2
  year: 2008
  end-page: 325
  article-title: Modeling and optimization of look‐locker spin labeling for measuring perfusion and transit time changes in activation studies taking into account arterial blood volume
  publication-title: Magn Reson Med
– volume: 27
  start-page: 1387
  issue: 11
  year: 2014
  end-page: 1396
  article-title: Evaluation of segmented 3D acquisition schemes for whole‐brain high‐resolution arterial spin labeling at 3T
  publication-title: NMR Biomed
– volume: 79
  start-page: 3249
  issue: 6
  year: 2018
  end-page: 3255
  article-title: Fisher information and Cramér‐Rao lower bound for experimental design in parallel imaging
  publication-title: Magn Reson Imaging
– volume: 21
  start-page: 427
  issue: 5
  year: 2008
  end-page: 436
  article-title: Bloodbrain barrier permeability to manganese and to Gd‐DOTA in a rat model of transient cerebral ischaemia
  publication-title: NMR Biomed
– start-page: 511
  year: 2016
  end-page: 518
– volume: 29
  start-page: 819
  issue: 3
  year: 2010
  end-page: 829
  article-title: Optimal experimental design for diffusion kurtosis imaging
  publication-title: IEEE Trans Med Imag
– volume: 16
  start-page: 1236
  issue: 6
  year: 1996
  end-page: 1249
  article-title: Reduced transit‐time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow
  publication-title: J Cereb Blood Flow Metab
– volume: 54
  start-page: 491
  issue: 2
  year: 2005
  end-page: 498
  article-title: Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements
  publication-title: Magn Reson Med
– volume: 66
  start-page: 662
  year: 2013
  end-page: 671
  article-title: Comparison of 2D and 3D single‐shot ASL perfusion fMRI sequences
  publication-title: NeuroImage
– volume: 17
  start-page: 463
  issue: 3
  year: 1998
  end-page: 468
  article-title: Design and construction of a realistic digital brain phantom
  publication-title: IEEE Trans Med Imag
– volume: 81
  start-page: 2474
  issue: 4
  year: 2019
  end-page: 2488
  article-title: A general framework for optimizing arterial spin labeling MRI experiments
  publication-title: Magn Reson Med
– volume: 35
  start-page: 1290
  issue: 6
  year: 2012
  end-page: 1299
  article-title: Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography
  publication-title: J Magn Reson Imaging
– year: 2002
– volume: 52
  start-page: 679
  issue: 3
  year: 2004
  end-page: 682
  article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla
  publication-title: Magn Reson Med
– volume: 69
  start-page: 563
  issue: 2
  year: 2013
  end-page: 570
  article-title: Modeling dispersion in arterial spin labeling: Validation using dynamic angiographic measurements
  publication-title: Magn Reson Med
– volume: 16
  start-page: 187
  issue: 2
  year: 1997
  end-page: 198
  article-title: Multimodality image registration by maximization of mutual information
  publication-title: IEEE Trans Med Imag
– volume: 63
  start-page: 374
  issue: 2
  year: 2010
  end-page: 384
  article-title: Arterial transit time effects in pulsed arterial spin labeling CBF mapping: Insight from a PET and MR study in normal human subjects
  publication-title: Magn Reson Med
– year: 2017
– volume: 60
  start-page: 1488
  issue: 6
  year: 2008
  end-page: 1497
  article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields
  publication-title: Magn Reson Med
– volume: 35
  start-page: 69
  issue: Supplement C
  year: 2017
  end-page: 80
  article-title: What are normal relaxation times of tissues at 3 T?
  publication-title: Magn Reson Imaging
– volume: 77
  start-page: 1656
  issue: 4
  year: 2017
  end-page: 1664
  article-title: Impact of tissue T1 on perfusion measurement with arterial spin labeling
  publication-title: Magn Reson Med
– volume: 32
  start-page: 281
  issue: 3
  year: 2014
  end-page: 290
  article-title: Noise estimation in parallel MRI: GRAPPA and SENSE
  publication-title: Magn Reson Imaging
– volume: 48
  start-page: 27
  issue: 1
  year: 2002
  end-page: 41
  article-title: Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: Accounting for capillary water permeability
  publication-title: Magn Reson Med
SSID ssj0008432
Score 2.3267155
Snippet Multi‐post‐labeling‐delay pseudo‐continuous arterial spin labeling (multi‐PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as...
Multi-post-labeling-delay pseudo-continuous arterial spin labeling (multi-PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e4182
SubjectTerms Bias
Biological products
Blood flow
Cerebral blood flow
Cost benefit analysis
Design of experiments
Design optimization
Estimation
experimental design
Experiments
Inverse problems
Labeling
Mathematical models
optimization
Parameter estimation
Perfusion
perfusion models
pseudo‐continuous arterial spin labeling
Relaxation time
Simulation
Spin labeling
Transit time
Title The costs and benefits of estimating T1 of tissue alongside cerebral blood flow and arterial transit time in pseudo‐continuous arterial spin labeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4182
https://www.proquest.com/docview/2457195165
https://www.proquest.com/docview/2315525683
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1492
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008432
  issn: 0952-3480
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLq8LjwKisKyMhLiFTRwnto-wUHHYrVaoSL1Ffq6KilM1KVz5Cdz4f_wSxm5alhsSl0RJJlGcefhzPP4G4GXJqVaOygx9R2VM2zqT3tBMVspKqY3KfaLMP-PTqZjP5cWQVRnXwmz5IfY_3KJnpHgdHVzp7uQKaaj-8pohOr4Oh0VRili2gbKLfRQWLBUnQwRBs5KJfEc8m9OT3Z1_gcqr0DT1LZN7__NW9-HugCjJm60JPIBrLozg9umukNsIbp0P8-cjuJkSPk33EH6ifRDTdn1HVLBEY8jzCzxoPYm8GxHHhksyK-KJPimHqGUbLmN1T2LcOs43L0lKeyd-2X5LT0n5oWjQpI894KInsXI9WQSy6tzGtr--_4iZ8YuwaTfdH-FuhRJojGll_COYTd7PTj9kQ5GG7DOtJc2s0Z77olLKOOukzoX0rHKOcc6tr5kzXJcoiKFFahzeeewxGS8tF1YZW5WP4SC0wT0BbKmoVC0Ntd4xnVuhhBVlQamtBYIuNYajnbqawdG6hrKKF4gS62oML_aX8QPHeQ8VHLanQQhbVQjtRDmGV0l5zWpL5dFsSZtpg2protqa6dvzuH_6r4LP4A6NI_CU4HIEB_16457DDfMVVbM-TiaJWz4Xx3D47uPk09lvVobrzw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tC-xy4VEWUVjASIhb2NSxY1ucYMVqEW21hx72Fvm5KipJ1aRw5Sdw4__xSxi7TVluSJyiJJMozrw-e8YzAK8KQY32VGWoOzpjxpWZCpZmimunlLE6D6lk_lhMp_LyUl3swdt-L8ymPsRuwS1qRrLXUcHjgvTJtaqh5ssbhvD4Btxk6GSikFN2sTPDkqXuZAghaFYwmfeVZ3N60j_5F6q8jk2Tczm791-fdR_ubjElebcRggew5-sBHJ72rdwGcDDZRtAHcDulfNr2IfxECSG2abuW6NoRg0YvzPGkCSRW3ohItr4is1G80CX2EL1o6qvY35NYv4oR5wVJie8kLJpv6S0pQxRFmnTRB847EnvXk3lNlq1fu-bX9x8xN35er5t1-4e4XSIFimPaG38Es7MPs9PzbNumIftMS0UzZ00QYcS1tt55ZXKpAuPeMyGECyXzVpgCCdG4KIMTvIA-k4nCCem0dbx4BPt1U_vHgCOVXJfKUhc8M7mTWjpZjCh1pUTYpYdw3POr2qpaW1HGxQhxYsmH8HJ3G39wjHzo2uN4KgSxnCO4k8UQXifuVctNMY9qU7aZVsi2KrKtmr6fxOOTfyV8AYfns8m4Gn-cfnoKd2icj6d0l2PY71Zr_wxu2a_IptXzJJ-_AWj17TI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXVi48CggCgsYCXELmzpObIsT7FKB6FYrVKS9RX6uikpSNSlc-Qnc-H_8EsZuUpYbEqcoySSyMw9_jsffADzPONXKUZmg76iEaVsk0huayFxZKbVRqY-U-VM-m4nzc3m2B6_6vTBbfojdD7fgGTFeBwd3K-uPLrGG6i8vGcLjK7DPQg2ZAeyffJx8mu4CsWCxPhmCCJpkTKQ992xKj_pn_8KVl9FpHF4mt_6rYbfhZocqyeutGdyBPVcN4fpxX8xtCAen3Rr6EK7FpE_T3IWfaCPE1E3bEFVZojHs-QWe1J4E7o2AZasLMh-HC21UEFHLuroIFT6Jceuw5rwkMfWd-GX9Lb4l5oiiUZM2jIKLloTq9WRRkVXjNrb-9f1HyI5fVJt60_wRblYogQYZd8ffg_nk7fz4XdIVakg-00LSxBrtuR_nShlnndSpkJ7lzjHOufUFc4brDAUxvEiNUzyPoybjmeXCKmPz7D4MqrpyDwB7KnJVSEOtd0ynVihhRTam1BYCgZcawWGvr7JztqakLOdjRIpFPoJnu9v4gcPah6oc9qdEGJvnCO9ENoIXUXvlakvnUW6Jm2mJaiuD2srZm9NwfPivgk_h4OxkUk7fzz48ghs0TMhjvsshDNr1xj2Gq-Yramn9pDPQ31zE7kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+costs+and+benefits+of+estimating+T1+of+tissue+alongside+cerebral+blood+flow+and+arterial+transit+time+in+pseudo%E2%80%90continuous+arterial+spin+labeling&rft.jtitle=NMR+in+biomedicine&rft.au=Bladt%2C+Piet&rft.au=Dekker%2C+Arnold+J.&rft.au=Clement%2C+Patricia&rft.au=Achten%2C+Eric&rft.date=2020-12-01&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=33&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fnbm.4182&rft.externalDBID=10.1002%252Fnbm.4182&rft.externalDocID=NBM4182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon