Class-Conditioned Variational Autoencoder with Evolutionary Optimization for the Virtual Data Generation Challenge
Human activity recognition (HAR) plays a crucial role in optimizing packing operations in industrial settings. However, HAR performance is often constrained by the limited availability of labeled data. To address this issue, we propose a novel data augmentation framework using conditional variationa...
Uložené v:
| Vydané v: | International Journal of Activity and Behavior Computing Ročník 2025; číslo 2; s. 1 - 14 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Care XDX Center, Kyushu Institute of Technology
22.05.2025
|
| ISSN: | 2759-2871 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Human activity recognition (HAR) plays a crucial role in optimizing packing operations in industrial settings. However, HAR performance is often constrained by the limited availability of labeled data. To address this issue, we propose a novel data augmentation framework using conditional variational autoencoders (CVAE) to generate high-quality synthetic data. Our approach ensures class consistency while increasing data diversity by conditioning the generation process on activity labels. Additionally, we optimize hyperparameters for data generation using evolutionary computation, further improving recognition accuracy. The proposed method is validated on the OpenPack dataset, demonstrating its effectiveness in enhancing HAR performance without modifying the recognition model itself. Our key contributions include the introduction of a robust data augmentation pipeline, the application of CVAE for HAR, and the use of evolutionary computation to optimize data generation. Our model trained with data augmentation achieved an F1 score of 53.4%, while the recognition model trained without data augmentation achieved an F1 score of 48.1%. |
|---|---|
| AbstractList | Human activity recognition (HAR) plays a crucial role in optimizing packing operations in industrial settings. However, HAR performance is often constrained by the limited availability of labeled data. To address this issue, we propose a novel data augmentation framework using conditional variational autoencoders (CVAE) to generate high-quality synthetic data. Our approach ensures class consistency while increasing data diversity by conditioning the generation process on activity labels. Additionally, we optimize hyperparameters for data generation using evolutionary computation, further improving recognition accuracy. The proposed method is validated on the OpenPack dataset, demonstrating its effectiveness in enhancing HAR performance without modifying the recognition model itself. Our key contributions include the introduction of a robust data augmentation pipeline, the application of CVAE for HAR, and the use of evolutionary computation to optimize data generation. Our model trained with data augmentation achieved an F1 score of 53.4%, while the recognition model trained without data augmentation achieved an F1 score of 48.1%. |
| Author | Tachioka, Yuuki |
| Author_xml | – sequence: 1 fullname: Tachioka, Yuuki organization: Denso IT Laboratory |
| BookMark | eNo9kM1OwzAQhC0EEqX0whP4BVL87_RYhVKQKvUCvUabxG5cuU7luCB4ekKDOM1I3-5oNHfoOnTBIPRAyVwRQeijO0BVzymRV2jCtFxkLNf0Fs363lVESr4ghJEJioWHvs-KLjQuuSGjwTuIDn49eLw8p86EumtMxJ8utXj10fnzBcYvvD0ld3Tfl2Nsu4hTa_DOxXQeXp8gAV6bYOLIixa8N2Fv7tGNBd-b2Z9O0fvz6q14yTbb9Wux3GQHylTILLWWWy2UYrVQuSW6AU2EWOS2roziQlDDLaHCcm6potJaUmldKaCQV5LwKSrG3EOfYG_KU3THoXUJMbnam_KyUMkIkyUbZVjrn9YtxNIE_gOWJ2q- |
| ContentType | Journal Article |
| Copyright | 2025 Author |
| Copyright_xml | – notice: 2025 Author |
| DOI | 10.60401/ijabc.105 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2759-2871 |
| EndPage | 14 |
| ExternalDocumentID | article_ijabc_2025_2_2025_105_article_char_en |
| GroupedDBID | JSF JSH M~E RJT RZJ |
| ID | FETCH-LOGICAL-j126n-f1ff3f74662c468f07da704498fcbe63441e3f014f33f1615ff0b77b6a1a8b503 |
| IngestDate | Wed Sep 03 06:30:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/deed.ja |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-j126n-f1ff3f74662c468f07da704498fcbe63441e3f014f33f1615ff0b77b6a1a8b503 |
| OpenAccessLink | https://www.jstage.jst.go.jp/article/ijabc/2025/2/2025_105/_article/-char/en |
| PageCount | 14 |
| ParticipantIDs | jstage_primary_article_ijabc_2025_2_2025_105_article_char_en |
| PublicationCentury | 2000 |
| PublicationDate | 2025/05/22 |
| PublicationDateYYYYMMDD | 2025-05-22 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025/05/22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | International Journal of Activity and Behavior Computing |
| PublicationTitleAlternate | IJABC |
| PublicationYear | 2025 |
| Publisher | Care XDX Center, Kyushu Institute of Technology |
| Publisher_xml | – name: Care XDX Center, Kyushu Institute of Technology |
| SSID | ssib055390020 |
| Score | 1.9092373 |
| Snippet | Human activity recognition (HAR) plays a crucial role in optimizing packing operations in industrial settings. However, HAR performance is often constrained by... |
| SourceID | jstage |
| SourceType | Publisher |
| StartPage | 1 |
| Title | Class-Conditioned Variational Autoencoder with Evolutionary Optimization for the Virtual Data Generation Challenge |
| URI | https://www.jstage.jst.go.jp/article/ijabc/2025/2/2025_105/_article/-char/en |
| Volume | 2025 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | International Journal of Activity and Behavior Computing, 2025/05/22, Vol.2025(2), pp.1-14 |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources databaseCode: M~E dateStart: 20240101 customDbUrl: isFulltext: true eissn: 2759-2871 dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssib055390020 providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfK4MAFgQDxLR-4VRGJ49iJxGXqirgwOIypnCLHtbV0LJ2yptou-5f4F3nPcVKzXZgQl6RK0r4075f35fdByHtjZc5NxqJEcSzJUTZSRa4ilVe2AJUvtVRu2IQ8PMwXi-LbZPJrqIXZ_pRNk19eFuf_ldVwDJiNpbN3YPf4o3AAPgPTYQtsh-1fMd6NuYxma1yLxjZEy-kx-MNDzG-_26yxdyW2kHAx2PnW3w2mz30FAXLmKzPHBMTjunVFJgdqo3yband-NsxhCQ3c2xHGwdzVfk4FRup9V8Z22g-VGNSniyDok3p96kzaH113WodhCZbhijrbObFYPTVdHCxckNqnh1x1Fyfdn0kQN9YPjBN8TGZFhJ5cKKWRRoBHFgjdJNDefUXqTb0gQFShYqhXqtI42nin_cacRM-w0l1TIrmS9Tu4vhzOYi0coOweuY93iTmEX67ngwDLsrRA-7tvg-uIfhhJgomzAoN_SBZ09svRY_LIc4Lu9xSekIlpnpL2FlhoABYagIUiWGgIFhqChQJYKICFerBQBAvdgYWOYHlGvn-aH80-R34KR7RKmGgim1ibWsmFYJqL3MZyqWTMeZFbXRmRgj1tUguetk1Ti_6DtXElZSVUAi98FqfPyV4Df-AFoYnQSwPPyKbgxjMQBVwwrrPYcLvEwNpL8rF_ROV532qlvBNTXv3b11-ThzsgvyF7m7Yzb8kDvd3UF-07x-jffWiV0g |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Class-Conditioned+Variational+Autoencoder+with+Evolutionary+Optimization+for+the+Virtual+Data+Generation+Challenge&rft.jtitle=International+Journal+of+Activity+and+Behavior+Computing&rft.au=Tachioka%2C+Yuuki&rft.date=2025-05-22&rft.pub=Care+XDX+Center%2C+Kyushu+Institute+of+Technology&rft.eissn=2759-2871&rft.volume=2025&rft.issue=2&rft.spage=1&rft.epage=14&rft_id=info:doi/10.60401%2Fijabc.105&rft.externalDocID=article_ijabc_2025_2_2025_105_article_char_en |