A Transfer Learning-Based Approach for Brain Tumor Classification with Attention Module

Unusual cell growths in the brain or surrounding tissues are termed brain tumors, which can be benign (noncancerous) or malignant (cancerous). Their prevalence, accounting for approximately 2% of all cancer diagnoses according to the World Health Organization (WHO), raises significant public health...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 International Conference on Electrical, Computer and Communication Engineering (ECCE) s. 1 - 6
Hlavní autoři: Khan, Md. Ariful Haque, Hossain, Md Shakhawat
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 13.02.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Unusual cell growths in the brain or surrounding tissues are termed brain tumors, which can be benign (noncancerous) or malignant (cancerous). Their prevalence, accounting for approximately 2% of all cancer diagnoses according to the World Health Organization (WHO), raises significant public health concerns. Patients often experience symptoms such as headaches, seizures, memory loss, and other neurological issues, impacting their quality of life depending on the tumor's location and size. This study presents a system for classifying brain tumors using a transfer learning model enhanced by a self-attention mechanism. This approach aims to improve feature representation and emphasize relevant regions in input images. We compare the proposed model's performance against existing classification methods, achieving an impressive accuracy of 98.14%.
DOI:10.1109/ECCE64574.2025.11013396