A Health Index Construction Method for Control Moment Gyroscopes Based on Physics-Inspired Deep Learning Approach
The attitude control system is crucial for spacecraft stability, with the Control Moment Gyroscope (CMG) as a key component. As spacecraft deployment expands, CMG failures have become more frequent, highlighting the importance of health monitoring. This paper presents a health index (HI) constructio...
Gespeichert in:
| Veröffentlicht in: | IEEE Conference on Industrial Electronics and Applications (Online) S. 1 - 6 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
03.08.2025
|
| Schlagworte: | |
| ISSN: | 2158-2297 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The attitude control system is crucial for spacecraft stability, with the Control Moment Gyroscope (CMG) as a key component. As spacecraft deployment expands, CMG failures have become more frequent, highlighting the importance of health monitoring. This paper presents a health index (HI) construction model based on thermal balance principles, which integrates deep learning with physics-informed priors for effective feature extraction across parameter and physical spaces. Local features are extracted using a one-dimensional (1D) Convolutional Neural Network (CNN), followed by a multi-layer Transformer encoder to capture global temporal dependencies and construct the parameter space. The temperature and current derivatives, along with their coupling terms, define the physical space. The fusion of both spaces is achieved through a two-dimensional (2D) CNN, generating the final HI and improving model interpretability. Validated with real aerospace telemetry data, the model demonstrates high precision and robustness in distinguishing between different health states. The proposed approach offers a novel and efficient solution for monitoring CMG health with significant practical implications. |
|---|---|
| AbstractList | The attitude control system is crucial for spacecraft stability, with the Control Moment Gyroscope (CMG) as a key component. As spacecraft deployment expands, CMG failures have become more frequent, highlighting the importance of health monitoring. This paper presents a health index (HI) construction model based on thermal balance principles, which integrates deep learning with physics-informed priors for effective feature extraction across parameter and physical spaces. Local features are extracted using a one-dimensional (1D) Convolutional Neural Network (CNN), followed by a multi-layer Transformer encoder to capture global temporal dependencies and construct the parameter space. The temperature and current derivatives, along with their coupling terms, define the physical space. The fusion of both spaces is achieved through a two-dimensional (2D) CNN, generating the final HI and improving model interpretability. Validated with real aerospace telemetry data, the model demonstrates high precision and robustness in distinguishing between different health states. The proposed approach offers a novel and efficient solution for monitoring CMG health with significant practical implications. |
| Author | Tian, Limei Zhao, Weiheng Gao, Zhanbao Yu, Jinsong Liu, Zhigang Zhang, Qiang |
| Author_xml | – sequence: 1 givenname: Limei surname: Tian fullname: Tian, Limei email: tian_maggie@126.com organization: Beijing Institute of Control Engineering,Beijing,China – sequence: 2 givenname: Qiang surname: Zhang fullname: Zhang, Qiang email: zhang007qiang@163.com organization: Beijing Institute of Control Engineering,Beijing,China – sequence: 3 givenname: Zhigang surname: Liu fullname: Liu, Zhigang email: liuzhigangbuaa@buaa.edu.cn organization: Beihang University (BUAA),SASEE,Beijing,China – sequence: 4 givenname: Jinsong surname: Yu fullname: Yu, Jinsong email: yujs@buaa.edu.cn organization: Beihang University (BUAA),SASEE,Beijing,China – sequence: 5 givenname: Zhanbao surname: Gao fullname: Gao, Zhanbao email: gaozhanbao@buaa.edu.cn organization: Beihang University (BUAA),SASEE,Beijing,China – sequence: 6 givenname: Weiheng surname: Zhao fullname: Zhao, Weiheng email: 18514734918@163.com organization: Beijing Institute of Control Engineering,Beijing,China |
| BookMark | eNo1kE1OwzAYRA0CiVJ6Axa-QIp_4thehlDaSKlg0X3lJl-IUWsH20j09gQBq5Ge3sxibtGV8w4QwpQsKSX6oa7qVVkIQdmSESYmSHOVS3aBFlpqxTkVLCe8uEQzRoXKGNPyBi1ifCeEcCql4nSGPkq8AXNMA65dB1-48i6m8Nkm6x3eQhp8h3sffngK_oi3_gQu4fU5-Nj6ESJ-NBE6PNmvwznaNma1i6MNE3sCGHEDJjjr3nA5jsGbdrhD1705Rlj85Rztnle7apM1L-u6KpvMap6ynjCquaR9AZpo07MWiOoOoGknW9IJ4AVRxrAcJg1yYw6CgulzYqhSU4fP0f3vrAWA_RjsyYTz_v8k_g2pLl8m |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICIEA65512.2025.11148472 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331524036 |
| EISSN | 2158-2297 |
| EndPage | 6 |
| ExternalDocumentID | 11148472 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-f0219371f6e909af2ce08dbe91d7c0d5e3608aa24e193e4aab51eaf40a1886e93 |
| IEDL.DBID | RIE |
| IngestDate | Wed Sep 17 06:32:19 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-f0219371f6e909af2ce08dbe91d7c0d5e3608aa24e193e4aab51eaf40a1886e93 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_11148472 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Aug.-3 |
| PublicationDateYYYYMMDD | 2025-08-03 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug.-3 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Conference on Industrial Electronics and Applications (Online) |
| PublicationTitleAbbrev | ICIEA |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003177831 |
| Score | 1.917794 |
| Snippet | The attitude control system is crucial for spacecraft stability, with the Control Moment Gyroscope (CMG) as a key component. As spacecraft deployment expands,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | CNN Control Moment Gyroscope Convolutional neural networks Deep learning Feature extraction Gyroscopes Health Index Indexes Monitoring Physics-Inspired Robustness Space vehicles Transformer Transformers Two-dimensional displays |
| Title | A Health Index Construction Method for Control Moment Gyroscopes Based on Physics-Inspired Deep Learning Approach |
| URI | https://ieeexplore.ieee.org/document/11148472 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCFryK-5YHVbRI7sT2WQiESrTpUqFvl2hfUJS20IPHvObtJgYGBLTmdpegs507n994RciOELJLMRizVDphXmGNaKcHiOHMqBceT0NN9fpKDgRqP9bAiqwcuDAAE8Bm0_GO4y3dz--5bZe3YF-9C4h93W0q5JmttGiqYCKXicY3WiXQ77-b3nQxLAk-4StJWvfzXIJWQR3r7__yCA9L8ZuTR4SbXHJItKI_I3g8xwWPy2qFrThHNvQIi9aM4a3FY2g-DoilWqN7uwem077UXVvTh0-tZzhewpLeY0RxF7wALtUuWl_4eHm13AAtaSbG-0E6lQ94ko979qPvIqoEKbKb5ihWYz738XZGBjrQpEguRclPQsZM2cinwLFLGJALQDYQx0zQGU4jIxErhGn5CGuW8hFNCwYqpdFxbLdGRY0xSwKOdGHxNhYMz0vTBmyzWkhmTOm7nf9gvyK7fooCs45ekgeGBK7JjP1az5dt12OgvOpuplw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0MmqgXvzB-24PXwnbb7rZHRJCNQDgQw42UdtZwARQ08d_bll3Ugwdvu5PZzWaa7kym771B6I7zNI8TExGhLBCvMEeUlJxQmlgpwLI49HSfu2m_L0cjNSjI6oELAwABfAY1fxnO8u3cvPtWWZ364p2n7o-7LTiP6ZqutWmpuFSYSkZLvE6k6lkzazUSVxR4ylUsauULfo1SCZmkffDPbzhE1W9OHh5sss0R2oLZMdr_ISd4gl4beM0qwpnXQMR-GGcpD4t7YVQ0djWqt3t4Ou559YUVfvz0ipbzBSzxvctpFjvvAAw1S5LN_Em8sz0ALHAhxvqCG4USeRUN261hs0OKkQpkqtiK5C6jewG8PAEVKZ3HBiJpJ6CoTU1kBbAkklrHHJwbcK0ngoLOeaSplO4Zdooqs_kMzhAGwyepZcqo1DkyFxMBbnPH2t0KbuEcVX3wxou1aMa4jNvFH_ZbtNsZ9rrjbtZ_ukR7frkCzo5doYoLFVyjHfOxmi7fbsKifwE4a6ze |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Conference+on+Industrial+Electronics+and+Applications+%28Online%29&rft.atitle=A+Health+Index+Construction+Method+for+Control+Moment+Gyroscopes+Based+on+Physics-Inspired+Deep+Learning+Approach&rft.au=Tian%2C+Limei&rft.au=Zhang%2C+Qiang&rft.au=Liu%2C+Zhigang&rft.au=Yu%2C+Jinsong&rft.date=2025-08-03&rft.pub=IEEE&rft.eissn=2158-2297&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICIEA65512.2025.11148472&rft.externalDocID=11148472 |