A Health Index Construction Method for Control Moment Gyroscopes Based on Physics-Inspired Deep Learning Approach

The attitude control system is crucial for spacecraft stability, with the Control Moment Gyroscope (CMG) as a key component. As spacecraft deployment expands, CMG failures have become more frequent, highlighting the importance of health monitoring. This paper presents a health index (HI) constructio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Conference on Industrial Electronics and Applications (Online) S. 1 - 6
Hauptverfasser: Tian, Limei, Zhang, Qiang, Liu, Zhigang, Yu, Jinsong, Gao, Zhanbao, Zhao, Weiheng
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 03.08.2025
Schlagworte:
ISSN:2158-2297
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The attitude control system is crucial for spacecraft stability, with the Control Moment Gyroscope (CMG) as a key component. As spacecraft deployment expands, CMG failures have become more frequent, highlighting the importance of health monitoring. This paper presents a health index (HI) construction model based on thermal balance principles, which integrates deep learning with physics-informed priors for effective feature extraction across parameter and physical spaces. Local features are extracted using a one-dimensional (1D) Convolutional Neural Network (CNN), followed by a multi-layer Transformer encoder to capture global temporal dependencies and construct the parameter space. The temperature and current derivatives, along with their coupling terms, define the physical space. The fusion of both spaces is achieved through a two-dimensional (2D) CNN, generating the final HI and improving model interpretability. Validated with real aerospace telemetry data, the model demonstrates high precision and robustness in distinguishing between different health states. The proposed approach offers a novel and efficient solution for monitoring CMG health with significant practical implications.
AbstractList The attitude control system is crucial for spacecraft stability, with the Control Moment Gyroscope (CMG) as a key component. As spacecraft deployment expands, CMG failures have become more frequent, highlighting the importance of health monitoring. This paper presents a health index (HI) construction model based on thermal balance principles, which integrates deep learning with physics-informed priors for effective feature extraction across parameter and physical spaces. Local features are extracted using a one-dimensional (1D) Convolutional Neural Network (CNN), followed by a multi-layer Transformer encoder to capture global temporal dependencies and construct the parameter space. The temperature and current derivatives, along with their coupling terms, define the physical space. The fusion of both spaces is achieved through a two-dimensional (2D) CNN, generating the final HI and improving model interpretability. Validated with real aerospace telemetry data, the model demonstrates high precision and robustness in distinguishing between different health states. The proposed approach offers a novel and efficient solution for monitoring CMG health with significant practical implications.
Author Tian, Limei
Zhao, Weiheng
Gao, Zhanbao
Yu, Jinsong
Liu, Zhigang
Zhang, Qiang
Author_xml – sequence: 1
  givenname: Limei
  surname: Tian
  fullname: Tian, Limei
  email: tian_maggie@126.com
  organization: Beijing Institute of Control Engineering,Beijing,China
– sequence: 2
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang007qiang@163.com
  organization: Beijing Institute of Control Engineering,Beijing,China
– sequence: 3
  givenname: Zhigang
  surname: Liu
  fullname: Liu, Zhigang
  email: liuzhigangbuaa@buaa.edu.cn
  organization: Beihang University (BUAA),SASEE,Beijing,China
– sequence: 4
  givenname: Jinsong
  surname: Yu
  fullname: Yu, Jinsong
  email: yujs@buaa.edu.cn
  organization: Beihang University (BUAA),SASEE,Beijing,China
– sequence: 5
  givenname: Zhanbao
  surname: Gao
  fullname: Gao, Zhanbao
  email: gaozhanbao@buaa.edu.cn
  organization: Beihang University (BUAA),SASEE,Beijing,China
– sequence: 6
  givenname: Weiheng
  surname: Zhao
  fullname: Zhao, Weiheng
  email: 18514734918@163.com
  organization: Beijing Institute of Control Engineering,Beijing,China
BookMark eNo1kE1OwzAYRA0CiVJ6Axa-QIp_4thehlDaSKlg0X3lJl-IUWsH20j09gQBq5Ge3sxibtGV8w4QwpQsKSX6oa7qVVkIQdmSESYmSHOVS3aBFlpqxTkVLCe8uEQzRoXKGNPyBi1ifCeEcCql4nSGPkq8AXNMA65dB1-48i6m8Nkm6x3eQhp8h3sffngK_oi3_gQu4fU5-Nj6ESJ-NBE6PNmvwznaNma1i6MNE3sCGHEDJjjr3nA5jsGbdrhD1705Rlj85Rztnle7apM1L-u6KpvMap6ynjCquaR9AZpo07MWiOoOoGknW9IJ4AVRxrAcJg1yYw6CgulzYqhSU4fP0f3vrAWA_RjsyYTz_v8k_g2pLl8m
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIEA65512.2025.11148472
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331524036
EISSN 2158-2297
EndPage 6
ExternalDocumentID 11148472
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-f0219371f6e909af2ce08dbe91d7c0d5e3608aa24e193e4aab51eaf40a1886e93
IEDL.DBID RIE
IngestDate Wed Sep 17 06:32:19 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-f0219371f6e909af2ce08dbe91d7c0d5e3608aa24e193e4aab51eaf40a1886e93
PageCount 6
ParticipantIDs ieee_primary_11148472
PublicationCentury 2000
PublicationDate 2025-Aug.-3
PublicationDateYYYYMMDD 2025-08-03
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug.-3
  day: 03
PublicationDecade 2020
PublicationTitle IEEE Conference on Industrial Electronics and Applications (Online)
PublicationTitleAbbrev ICIEA
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177831
Score 1.917794
Snippet The attitude control system is crucial for spacecraft stability, with the Control Moment Gyroscope (CMG) as a key component. As spacecraft deployment expands,...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms CNN
Control Moment Gyroscope
Convolutional neural networks
Deep learning
Feature extraction
Gyroscopes
Health Index
Indexes
Monitoring
Physics-Inspired
Robustness
Space vehicles
Transformer
Transformers
Two-dimensional displays
Title A Health Index Construction Method for Control Moment Gyroscopes Based on Physics-Inspired Deep Learning Approach
URI https://ieeexplore.ieee.org/document/11148472
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCFryK-5YHVbRI7sT2WQiESrTpUqFvl2hfUJS20IPHvObtJgYGBLTmdpegs507n994RciOELJLMRizVDphXmGNaKcHiOHMqBceT0NN9fpKDgRqP9bAiqwcuDAAE8Bm0_GO4y3dz--5bZe3YF-9C4h93W0q5JmttGiqYCKXicY3WiXQ77-b3nQxLAk-4StJWvfzXIJWQR3r7__yCA9L8ZuTR4SbXHJItKI_I3g8xwWPy2qFrThHNvQIi9aM4a3FY2g-DoilWqN7uwem077UXVvTh0-tZzhewpLeY0RxF7wALtUuWl_4eHm13AAtaSbG-0E6lQ94ko979qPvIqoEKbKb5ihWYz738XZGBjrQpEguRclPQsZM2cinwLFLGJALQDYQx0zQGU4jIxErhGn5CGuW8hFNCwYqpdFxbLdGRY0xSwKOdGHxNhYMz0vTBmyzWkhmTOm7nf9gvyK7fooCs45ekgeGBK7JjP1az5dt12OgvOpuplw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0MmqgXvzB-24PXwnbb7rZHRJCNQDgQw42UdtZwARQ08d_bll3Ugwdvu5PZzWaa7kym771B6I7zNI8TExGhLBCvMEeUlJxQmlgpwLI49HSfu2m_L0cjNSjI6oELAwABfAY1fxnO8u3cvPtWWZ364p2n7o-7LTiP6ZqutWmpuFSYSkZLvE6k6lkzazUSVxR4ylUsauULfo1SCZmkffDPbzhE1W9OHh5sss0R2oLZMdr_ISd4gl4beM0qwpnXQMR-GGcpD4t7YVQ0djWqt3t4Ou559YUVfvz0ipbzBSzxvctpFjvvAAw1S5LN_Em8sz0ALHAhxvqCG4USeRUN261hs0OKkQpkqtiK5C6jewG8PAEVKZ3HBiJpJ6CoTU1kBbAkklrHHJwbcK0ngoLOeaSplO4Zdooqs_kMzhAGwyepZcqo1DkyFxMBbnPH2t0KbuEcVX3wxou1aMa4jNvFH_ZbtNsZ9rrjbtZ_ukR7frkCzo5doYoLFVyjHfOxmi7fbsKifwE4a6ze
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Conference+on+Industrial+Electronics+and+Applications+%28Online%29&rft.atitle=A+Health+Index+Construction+Method+for+Control+Moment+Gyroscopes+Based+on+Physics-Inspired+Deep+Learning+Approach&rft.au=Tian%2C+Limei&rft.au=Zhang%2C+Qiang&rft.au=Liu%2C+Zhigang&rft.au=Yu%2C+Jinsong&rft.date=2025-08-03&rft.pub=IEEE&rft.eissn=2158-2297&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICIEA65512.2025.11148472&rft.externalDocID=11148472