Advancing Handwritten Digit Recognition in Defense Systems: Comparative Analysis of Autoencoder-Based Transfer Learning

The presence of labelled data is limited while the unlabelled data is present in abundance. Developing well annotated datasets is a challenging task and it requires lot of computation. These practical challenges led to the need for the development of models that can obtain knowledge from one domain...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2025 IEEE Space, Aerospace and Defence Conference (SPACE) s. 1 - 6
Hlavní autori: Jain, Shruti, Kapur, Shivani, Vandana
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 21.07.2025
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The presence of labelled data is limited while the unlabelled data is present in abundance. Developing well annotated datasets is a challenging task and it requires lot of computation. These practical challenges led to the need for the development of models that can obtain knowledge from one domain and use it in another similar (but not same) domain which forms the core of transfer learning paradigm. This paper's work is based on self-taught learning which obtains knowledge from a source domain and further uses it on the target domain. Optimal representation of source data is learned and then the labeled data present in the target domain is transformed to the representations already learned. These transformed representations are used for further supervised tasks.A vast amount of military data is present in intelligence gathering, logs, navigation maps and handwritten reports. It's crucial to digitalize the data for operational efficiency and decision-making. To learn the optimal representation in source domain, autoencoders are used. The experiments are done on MNIST dataset. Two separate datasets similar to MNIST are created for testing. The results show that the self-taught learning approach performs better than the baseline model where transfer learning is not used.
AbstractList The presence of labelled data is limited while the unlabelled data is present in abundance. Developing well annotated datasets is a challenging task and it requires lot of computation. These practical challenges led to the need for the development of models that can obtain knowledge from one domain and use it in another similar (but not same) domain which forms the core of transfer learning paradigm. This paper's work is based on self-taught learning which obtains knowledge from a source domain and further uses it on the target domain. Optimal representation of source data is learned and then the labeled data present in the target domain is transformed to the representations already learned. These transformed representations are used for further supervised tasks.A vast amount of military data is present in intelligence gathering, logs, navigation maps and handwritten reports. It's crucial to digitalize the data for operational efficiency and decision-making. To learn the optimal representation in source domain, autoencoders are used. The experiments are done on MNIST dataset. Two separate datasets similar to MNIST are created for testing. The results show that the self-taught learning approach performs better than the baseline model where transfer learning is not used.
Author Jain, Shruti
Vandana
Kapur, Shivani
Author_xml – sequence: 1
  givenname: Shruti
  surname: Jain
  fullname: Jain, Shruti
  email: shrutijain94@bel.co.in
  organization: Bharat Electronics Limited,Central Research Laboratory,Ghaziabad,India
– sequence: 2
  givenname: Shivani
  surname: Kapur
  fullname: Kapur, Shivani
  email: shivanikapur@bel.co.in
  organization: Bharat Electronics Limited,Central Research Laboratory,Ghaziabad,India
– sequence: 3
  surname: Vandana
  fullname: Vandana
  email: vandana@bel.co.in
  organization: Bharat Electronics Limited,Central Research Laboratory,Ghaziabad,India
BookMark eNo1kM1OAjEURmuiC0XewEVfYLA_lLbuxhHFhEQj7Mmd6S1pAi1pK4S3l0RdneQszpd8d-Q6poiEUM4mnDP7uPpsu_lMGSMmggl1kVwzM5VXZGy1NVJyxZUS4pacWneEOIS4pQuI7pRDrRjpS9iGSr9wSNsYakiRhotEj7EgXZ1LxX15ol3aHyBDDUekbYTduYRCk6ftd00Yh-QwN89Q0NF1hlg8ZrpEyPGydk9uPOwKjv84IuvX-bpbNMuPt_euXTbBytogCu1AK4dovAZUA2gEpqycuQGwh6mBvpeAINFbo1gvtDJMeMetnw1cjsjDbzYg4uaQwx7yefN_h_wBqhdeSg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SPACE65882.2025.11170843
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331515522
EndPage 6
ExternalDocumentID 11170843
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-ee27da75dee8f7ae5ca7ea05936dcaeba48abb3aea3ef9850b275802fd19f6c13
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:01 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-ee27da75dee8f7ae5ca7ea05936dcaeba48abb3aea3ef9850b275802fd19f6c13
PageCount 6
ParticipantIDs ieee_primary_11170843
PublicationCentury 2000
PublicationDate 2025-July-21
PublicationDateYYYYMMDD 2025-07-21
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-July-21
  day: 21
PublicationDecade 2020
PublicationTitle 2025 IEEE Space, Aerospace and Defence Conference (SPACE)
PublicationTitleAbbrev SPACE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9155725
Snippet The presence of labelled data is limited while the unlabelled data is present in abundance. Developing well annotated datasets is a challenging task and it...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Adaptation models
Autoencoders
Contractive Autoencoder
Convolutional Autoencoder
Data mining
Deep Autoencoder
Denoising Autoencoder
Feature extraction
Noise reduction
Representation learning
Self-Taught Learning
Sparse Autoencoder
Support vector machines
Testing
Transfer learning
Unsupervised Feature Learning
Title Advancing Handwritten Digit Recognition in Defense Systems: Comparative Analysis of Autoencoder-Based Transfer Learning
URI https://ieeexplore.ieee.org/document/11170843
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVoxcAEiCLe8sCaNi-_2Epp1amqoEO3yo_rKkuCStr-PrabUDEwsFlXlhLZw8m5uecchJ4ViXWWJSQyucodQeE2EpqxiCrHnhNqiJVxCJtgsxlfLsW8EasHLQwAhOEz6Ptl-JdvKr31rbJB4mNSeJ51UIcxehBrtdM5sRh8zIejsUNU7gVWKem3238FpwTcmJz_84kXqHdU4OH5D7ZcohMor9A-RCBrV8BTWZq94_Xuixe_Feuixu_tJFBV4sIVwTqCCrhxJH_Bo6PNN26dSHBl8XBbV97M0sAmenWQZnCAL_cSuPFeXffQYjJejKZRE5wQFSKrI4CUGcmIAeCWSSBaMpAhu89oCUrmXCqVSZAZWMFJrFLHGuLUmkRYqpPsGnXLqoQbhDn1GktNc8EgF5rKlFibJlIyw5jJ6S3q-UNbfR6sMVbted39Ub9HZ_5qfHM0TR5Qt95s4RGd6l1dfG2ewoV-A8Qbph8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLSgIMEEiCK-8cCaNh92bLOV0qqIUlXQoVvl2M8oS4JKSv8-tkmoGBjYrCdZiezhci_v7hC6zWiokiSigSYZsQSFm0AoxoI0s-w5SjU1MvRhE2wy4fO5mNZida-FAQA_fAYdt_T_8nWpVq5V1o1cTAonyTbacdFZtVyrmc8JRfd12usPLKZyJ7GKaafZ8Cs6xSPH8OCfzzxE7Y0GD09_0OUIbUFxjNY-BFnZAh7JQq8ts7ffvPghf8sr_NLMApUFzm0RjKWogGtP8jvc3xh948aLBJcG91ZV6ewsNSyDewtqGnsAsy-Ba_fVtzaaDQez_iiooxOCXCRVABAzLRnVANwwCVRJBtKn92klIZOEyyxLJMgEjOA0zGLLG8LY6EiYVEXJCWoVZQGnCPPUqSxVSgQDIlQqY2pMHEnJNGOapGeo7Q5t8f5tjrFozuv8j_oN2hvNnseL8ePk6QLtu2tyrdI4ukStarmCK7SrPqv8Y3ntL_cLlFCpaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+Space%2C+Aerospace+and+Defence+Conference+%28SPACE%29&rft.atitle=Advancing+Handwritten+Digit+Recognition+in+Defense+Systems%3A+Comparative+Analysis+of+Autoencoder-Based+Transfer+Learning&rft.au=Jain%2C+Shruti&rft.au=Kapur%2C+Shivani&rft.au=Vandana&rft.date=2025-07-21&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSPACE65882.2025.11170843&rft.externalDocID=11170843