Graph Learning-based Dynamic Multi-objective Optimization Algorithm

Dynamic Multi-objective Optimization Problems (DMOPs) involve multiple conflicting objective functions that evolve over time. Solving DMOPs requires Dynamic Multiobjective Optimization Algorithms (DMOAs) capable of tracking the dynamic evolution of the Pareto-optimal Front (POF) in real time. In rec...

Full description

Saved in:
Bibliographic Details
Published in:2025 7th International Conference on Data-driven Optimization of Complex Systems (DOCS) pp. 283 - 288
Main Authors: Wang, Chi, Song, Wei
Format: Conference Proceeding
Language:English
Published: IEEE 19.08.2025
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dynamic Multi-objective Optimization Problems (DMOPs) involve multiple conflicting objective functions that evolve over time. Solving DMOPs requires Dynamic Multiobjective Optimization Algorithms (DMOAs) capable of tracking the dynamic evolution of the Pareto-optimal Front (POF) in real time. In recent years, prediction-based DMOAs have demonstrated significant potential in solving DMOPs. However, most existing methods heavily rely on a limited number of Pareto-optimal Sets (POS) from past environments, hindering accurate modeling of the POS's temporal migration patterns, and most approaches model and predict each subspace independently, neglecting the spatial correlations and interdependencies among them. Additionally, the uneven distribution of individuals in the objective space may leave some subspaces sparsely populated, further limiting the algorithm's search capability. Faced with these challenges, this paper proposes a graph learning-based dynamic multi-objective optimization algorithm, termed GroupDMOEA. The algorithm begins by partitioning the objective space into multiple subspaces and constructing a graph structure based on the adjacency relationships among them. Graph Convolutional Network (GCN) is then employed to model and predict the migration trends of subspace centers, enabling a more comprehensive characterization of the dynamic evolution of the POS. To address the issue of missing individuals in certain subspaces, Group-DMOEA incorporates a local perturbationbased reconstruction mechanism, which utilizes historical information from neighboring subspaces to complete the sparse regions. We compare the proposed Group-DMOEA with six state-of-the-art DMOAs on fourteen benchmark test problems, and the experimental results demonstrate the excellent performance of Group-DMOEA in handling DMOPs
AbstractList Dynamic Multi-objective Optimization Problems (DMOPs) involve multiple conflicting objective functions that evolve over time. Solving DMOPs requires Dynamic Multiobjective Optimization Algorithms (DMOAs) capable of tracking the dynamic evolution of the Pareto-optimal Front (POF) in real time. In recent years, prediction-based DMOAs have demonstrated significant potential in solving DMOPs. However, most existing methods heavily rely on a limited number of Pareto-optimal Sets (POS) from past environments, hindering accurate modeling of the POS's temporal migration patterns, and most approaches model and predict each subspace independently, neglecting the spatial correlations and interdependencies among them. Additionally, the uneven distribution of individuals in the objective space may leave some subspaces sparsely populated, further limiting the algorithm's search capability. Faced with these challenges, this paper proposes a graph learning-based dynamic multi-objective optimization algorithm, termed GroupDMOEA. The algorithm begins by partitioning the objective space into multiple subspaces and constructing a graph structure based on the adjacency relationships among them. Graph Convolutional Network (GCN) is then employed to model and predict the migration trends of subspace centers, enabling a more comprehensive characterization of the dynamic evolution of the POS. To address the issue of missing individuals in certain subspaces, Group-DMOEA incorporates a local perturbationbased reconstruction mechanism, which utilizes historical information from neighboring subspaces to complete the sparse regions. We compare the proposed Group-DMOEA with six state-of-the-art DMOAs on fourteen benchmark test problems, and the experimental results demonstrate the excellent performance of Group-DMOEA in handling DMOPs
Author Song, Wei
Wang, Chi
Author_xml – sequence: 1
  givenname: Chi
  surname: Wang
  fullname: Wang, Chi
  email: wc1171791492@gmail.com
  organization: Jiangnan University,School of Artificial Intelligence and Computer Science,Wuxi,China
– sequence: 2
  givenname: Wei
  surname: Song
  fullname: Song, Wei
  email: songwei@jiangnan.edu.cn
  organization: Jiangnan University,School of Artificial Intelligence and Computer Science,Wuxi,China
BookMark eNo1j1FLwzAUhSPog879A8H8gc4kd0mXx9HpJlT64N7HbXK7Rdq0dFGYv96C-nTg8PFxzh27jn0kxh6lWEgp7NOmKt5NrgEWSig9dUoIY_QVm9vcrgCkNrmF5S0rtiMOJ14SjjHEY1bjmTzfXCJ2wfG3zzaFrK8_yKXwRbwaUujCN6bQR75uj_0Y0qm7ZzcNtmea_-WM7V-e98UuK6vta7Eus2AhZeQUeiGt9tohySUpsH7aaH1DElAbaHJEYcg1tRFigsEbv3IT2BjlFczYw682ENFhGEOH4-Xwfw1-AIMhSgA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DOCS67533.2025.11200665
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331567934
EndPage 288
ExternalDocumentID 11200665
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-ec2ad0195d5cae14e239d6759dfe13a563f7aa06ecfb6002ad3d6d8c4e2f62d23
IEDL.DBID RIE
IngestDate Wed Nov 19 08:27:15 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-ec2ad0195d5cae14e239d6759dfe13a563f7aa06ecfb6002ad3d6d8c4e2f62d23
PageCount 6
ParticipantIDs ieee_primary_11200665
PublicationCentury 2000
PublicationDate 2025-Aug.-19
PublicationDateYYYYMMDD 2025-08-19
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug.-19
  day: 19
PublicationDecade 2020
PublicationTitle 2025 7th International Conference on Data-driven Optimization of Complex Systems (DOCS)
PublicationTitleAbbrev DOCS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9186977
Snippet Dynamic Multi-objective Optimization Problems (DMOPs) involve multiple conflicting objective functions that evolve over time. Solving DMOPs requires Dynamic...
SourceID ieee
SourceType Publisher
StartPage 283
SubjectTerms Accuracy
Benchmark testing
Computational modeling
Dynamic multi-objective optimization
Evolutionary computation
Graph Learning
Heuristic algorithms
Optimization
Partitioning algorithms
Prediction algorithms
Prediction model
Predictive models
Time series analysis
Title Graph Learning-based Dynamic Multi-objective Optimization Algorithm
URI https://ieeexplore.ieee.org/document/11200665
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCLe8sDqNrFTJx5RSmFqK9GhW-X4zqWINqhN-f3YTgpiYGCzrJOsO0v3_u4IuedFZOMsSxhwZZifwMWU5dbX4E2qJcgIbVg2kY5G2WymJg1YPWBhEDE0n2HXH0MtH0qz86mynvMNQqmgRVppKmuwVtOzFUeqNxjnL87_FcKFfbzf3VP_2psSzMbw-J8PnpDODwCPTr5Nyyk5wPUZyZ_8cGnaTERdMG-AgA7qlfI0IGlZWbzVGoyOnS5YNSBL-vC-KDfL6nXVIdPh4zR_Zs0OBLZUomJouAaP6YO-0RgnyIUCx6MCi7HQfSlsqnUk0djCV9g0CJCQGUdoJQcuzkl7Xa7xgtAEkgKk9AGhSKS1HtGqjNMx2uhCc7wkHS-A-Uc95WK-5_3qj_trcuTF7POrsboh7Wqzw1tyaD6r5XZzF_7mC_GyklU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omuhJjRjf9uC1sNsuZXs0oGJEIJEDN9LtAzHCGlz8_XbKovHgwVvTNGmmTebR6fd9ANcsi1ycpgk1TGqKDFxUOuawB6-bShgRWRfEJpq9XjoayUEJVg9YGGtt-HxmazgMvXyT6yU-ldV9bhBaBZuwhdJZJVyr_LUVR7Le7reefQbMuS_8WKO2Xv9LOSUEjru9f265D9UfCB4ZfAeXA9iw80No3SO9NCk5UScUQ5Ah7ZWoPAlYWppnrysfRvreG8xKmCW5eZvki2nxMqvC8O522OrQUgWBTiUvqNVMGUT1mYZWNk4s49J4G6VxNuaqIbhrKhUJq12GPTZluBEm1X6hE8wwfgSVeT63x0ASk2RGCCwJeSKcQ0yr1N7LKK0yxewJVPEAxu8rnovx2vbTP-avYKczfOqOuw-9xzPYxSPH19ZYnkOlWCztBWzrz2L6sbgM9_QFwLmVng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+7th+International+Conference+on+Data-driven+Optimization+of+Complex+Systems+%28DOCS%29&rft.atitle=Graph+Learning-based+Dynamic+Multi-objective+Optimization+Algorithm&rft.au=Wang%2C+Chi&rft.au=Song%2C+Wei&rft.date=2025-08-19&rft.pub=IEEE&rft.spage=283&rft.epage=288&rft_id=info:doi/10.1109%2FDOCS67533.2025.11200665&rft.externalDocID=11200665