Towards early bowel cancer detection: A data driven dynamic method of lesions characterization using a robotic capsule

Recent advances in miniaturised, dynamically actuated micro-robots have opened new possibilities for non-visual, in-situ disease diagnosis. This study introduces a method for early bowel cancer detection using a self-propelled robotic capsule autonomously navigating the bowel and identifying maligna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 30th International Conference on Automation and Computing (ICAC) S. 1 - 6
Hauptverfasser: Afebu, Kenneth Omokhagbo, Liu, Yang, Papatheou, Evangelos, Prasad, Shyam
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 27.08.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent advances in miniaturised, dynamically actuated micro-robots have opened new possibilities for non-visual, in-situ disease diagnosis. This study introduces a method for early bowel cancer detection using a self-propelled robotic capsule autonomously navigating the bowel and identifying malignant lesions based on localised variations in tissue stiffness. The approach leverages the sensitivity of the capsule's dynamic responses to biomechanical changes in the surrounding tissue. A dual-phase machine learning framework is proposed. In the first phase, the capsule's displacement signals are processed into features which are then used to predict tissue stiffness (Young's modulus, E) using multilayer perceptron (MLP), support vector regression (SVR), and Gaussian process regression (GPR). In the second phase, a Gaussian mixture model (GMM) is used to cluster the predicted E-values into discrete stiffness categories. Both accuracy and uncertainty Oriented metrics were used to evaluate the performances of the models. MLP offered the most robust regression on simulated data, while GPR outperformed it on experimental data. The GMM achieved over 89% clustering accuracy across both datasets. This study highlights a promising route for dynamic, non-visual bowel cancer detection and sets the stage for reliable deep tissue biopsy, while also addressing the current drawbacks of visual-based bowel cancer diagnostic methods.
AbstractList Recent advances in miniaturised, dynamically actuated micro-robots have opened new possibilities for non-visual, in-situ disease diagnosis. This study introduces a method for early bowel cancer detection using a self-propelled robotic capsule autonomously navigating the bowel and identifying malignant lesions based on localised variations in tissue stiffness. The approach leverages the sensitivity of the capsule's dynamic responses to biomechanical changes in the surrounding tissue. A dual-phase machine learning framework is proposed. In the first phase, the capsule's displacement signals are processed into features which are then used to predict tissue stiffness (Young's modulus, E) using multilayer perceptron (MLP), support vector regression (SVR), and Gaussian process regression (GPR). In the second phase, a Gaussian mixture model (GMM) is used to cluster the predicted E-values into discrete stiffness categories. Both accuracy and uncertainty Oriented metrics were used to evaluate the performances of the models. MLP offered the most robust regression on simulated data, while GPR outperformed it on experimental data. The GMM achieved over 89% clustering accuracy across both datasets. This study highlights a promising route for dynamic, non-visual bowel cancer detection and sets the stage for reliable deep tissue biopsy, while also addressing the current drawbacks of visual-based bowel cancer diagnostic methods.
Author Afebu, Kenneth Omokhagbo
Liu, Yang
Prasad, Shyam
Papatheou, Evangelos
Author_xml – sequence: 1
  givenname: Kenneth Omokhagbo
  surname: Afebu
  fullname: Afebu, Kenneth Omokhagbo
  email: k.afebu@exeter.ac.uk
  organization: University of Exeter,Engineering Department,Exeter,UK,EX4 4QF
– sequence: 2
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  email: y.liu2@exeter.ac.uk
  organization: University of Exeter,Engineering Department,Exeter,UK,EX4 4QF
– sequence: 3
  givenname: Evangelos
  surname: Papatheou
  fullname: Papatheou, Evangelos
  email: e.papatheou@exeter.ac.uk
  organization: University of Exeter,Engineering Department,Exeter,UK,EX4 4QF
– sequence: 4
  givenname: Shyam
  surname: Prasad
  fullname: Prasad, Shyam
  email: shyamprasad@nhs.net
  organization: RDUH NHS Foundation Trust,Endoscopy Department,Exeter,UK,EX2 5DW
BookMark eNo1UMFKAzEUjKAHrf0DwfcDrZuk2d14K4taoeCl9_I2ebGBbVKyaUv9eiPqZQaGmWGYO3YdYiDGHnk157zST-_dsquVbPRcVEIVjeu6wBWb6ka3UnIl1ELJW3baxDMmOwJhGi7QxzMNYDAYSmApk8k-hmdYgsWMYJM_UQB7Cbj3BvaUd9FCdDDQWHwjmB0mNJmS_8KfJBxHHz4BIcU-5hIxeBiPA92zG4fDSNM_nrDN68umW83WH29l-3rmtcwz6km2LW9dtdCSC1c2U-2MrK1DarSujSbe9EIRKuUMoiJR26rlxdUK7OWEPfzWeiLaHpLfY7ps_9-Q338kXK8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAC65379.2025.11196111
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331525453
EndPage 6
ExternalDocumentID 11196111
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-ebe38818f049312f254e6fc36dfae7996c9e17b25ea55fcaa5e26d081e6f82ab3
IEDL.DBID RIE
IngestDate Sat Oct 25 03:16:25 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-ebe38818f049312f254e6fc36dfae7996c9e17b25ea55fcaa5e26d081e6f82ab3
PageCount 6
ParticipantIDs ieee_primary_11196111
PublicationCentury 2000
PublicationDate 2025-Aug.-27
PublicationDateYYYYMMDD 2025-08-27
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug.-27
  day: 27
PublicationDecade 2020
PublicationTitle 2025 30th International Conference on Automation and Computing (ICAC)
PublicationTitleAbbrev ICAC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9196302
Snippet Recent advances in miniaturised, dynamically actuated micro-robots have opened new possibilities for non-visual, in-situ disease diagnosis. This study...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Artificial networks
Biomechanical evaluation
Biomechanics
Bowel cancer
Cancer detection
Capsule robot
Computational modeling
Data models
Early diagnosis
Lesions
Support vector machines
Uncertainty
Vibrations
Visualization
Title Towards early bowel cancer detection: A data driven dynamic method of lesions characterization using a robotic capsule
URI https://ieeexplore.ieee.org/document/11196111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46PHhSceJv3sFrt6VpmsbbGIqCjB2G7Dba5EUGo5Wum_--eek28eDBSyghtJCX9Mt7-b73GHvwiMItch1JkvUkMhFRlsokcsYWHt-sG4Q45PubGo-z2UxPtmL1oIVBxEA-wx49hrt8W5k1hcr6fl_qlJOS91CptBVrbTlbfKD7r6PhKJVCkf4klr3d6F91UwJsPJ_884OnrPsjwIPJHlrO2AGW52wzDRTXFSAlJYai-sIlGLJaDRabwKkqH2EIxPoEW9N_DGxbcR7aStFQOVgiBchWYPapmlslJhAF_gNyqKui8svJv9p70Evssunz03T0Em3LJkQLLZrIW0VkHoadP_sLHjvvAWLqjEity1F598Zo5KqIJeZSOpPnEuPU-pOBH5XFeSEuWKesSrxkIK2ke0ehjPVudCG1Q8tFYrTwjTR4xbo0Z_PPNjHGfDdd13_037BjsgyFZGN1yzpNvcY7dmQ2zWJV3wdzfgPCPKQ1
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBT2pOPG37-C129o0beNtDMeGc-xQZLfRJi8yGKt03fz3fUm3iQcPXkIJoYW8pF_ey_e9x9gTIYqv0ZeesLKeUITcSyIRekbpnPBNm46LQ76P4vE4mU7lZCtWd1oYRHTkM2zZR3eXrwu1tqGyNu1LGflWyXsowjDo1HKtLWvL78j2sNftRYLHVoESiNZu_K_KKQ44-qf__OQZa_5I8GCyB5dzdoDLC7ZJHcl1BWjTEkNefOEClLVbCRorx6paPkMXLO8TdGn_ZKDrmvNQ14qGwsACbYhsBWqfrLnWYoIlwX9ABmWRF7Sg6NXkQy-wydL-S9obeNvCCd5c8soju_CEgNjQ6Z_7gSEfECOjeKRNhjE5OEqiH-eBwEwIo7JMYBBpOhvQqCTIcn7JGstiiVcMhBb25pHHSpMjnQtpUPs8VJJTIxRes6ads9lnnRpjtpuumz_6H9nxIH0bzUbD8estO7FWsgHaIL5jjapc4z07UptqviofnGm_AXXep3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+30th+International+Conference+on+Automation+and+Computing+%28ICAC%29&rft.atitle=Towards+early+bowel+cancer+detection%3A+A+data+driven+dynamic+method+of+lesions+characterization+using+a+robotic+capsule&rft.au=Afebu%2C+Kenneth+Omokhagbo&rft.au=Liu%2C+Yang&rft.au=Papatheou%2C+Evangelos&rft.au=Prasad%2C+Shyam&rft.date=2025-08-27&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICAC65379.2025.11196111&rft.externalDocID=11196111