Data-based tuning of distinct inverse models used in feedforward and disturbance observer

This work proposes a data-based tuning method which is capable of tuning parameters of inverse models used in the feedforward controller and disturbance observer (DOB). Specifically, it aims to enhance the tracking performance of the positioning system by implementing different inverse models for fe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE Conference on Industrial Electronics and Applications (Online) s. 1 - 6
Hlavní autori: Xu, Yifan, Chen, Silu, Halim, Dunant, Xu, Zhuang, Wang, Weizhen, Zhang, Chi
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 03.08.2025
Predmet:
ISSN:2158-2297
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This work proposes a data-based tuning method which is capable of tuning parameters of inverse models used in the feedforward controller and disturbance observer (DOB). Specifically, it aims to enhance the tracking performance of the positioning system by implementing different inverse models for feedforward controller and DOB, allowing a data-based tuning method to find two sets of optimal parameters for both inverse models simultaneously. Real-time operational data are utilized to achieve the optimization of inverse model's parameters. Three experiments are required for the completion of single iteration in the presence of disturbances and noise. Compared to the tuning of uniform inverse model used in feedforward controller and DOB, the tuning of distinct inverse models for feedforward controller and DOB results in enhanced tracking performance. The effectiveness of the proposed method is verified through simulations.
ISSN:2158-2297
DOI:10.1109/ICIEA65512.2025.11149046