Data Imputation Techniques Using the Bag of Functions: Addressing Variable Input Lengths and Missing Data in Time Series Decomposition
In time series analysis, the ability to effectively handle data with varying input lengths and missing data is crucial for accurate modeling. This paper presents the Bag-of-Functions-Driven Imputation framework, which leverages sequence-length independent techniques to decompose time series data whi...
Uloženo v:
| Vydáno v: | IEEE International Conference on Industrial Technology (Online) s. 1 - 7 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
26.03.2025
|
| Témata: | |
| ISSN: | 2643-2978 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In time series analysis, the ability to effectively handle data with varying input lengths and missing data is crucial for accurate modeling. This paper presents the Bag-of-Functions-Driven Imputation framework, which leverages sequence-length independent techniques to decompose time series data while accommodating inputs of differing sizes. Unlike traditional methods that require uniform input lengths, the Padding-BoF framework employs a flexible encoding approach, allowing for the integration of variable-length time series and missing elements in the data. Through a series of experiments, we demonstrate that the BoF framework not only ensures precise reconstruction of the original data but also enhances data imputation capabilities by utilizing decomposed components. The results show that this method offers significant advantages in scenarios involving irregular sampling and disparate operational cycles, making it a valuable tool for applications in fields such as finance, healthcare, and industrial monitoring. |
|---|---|
| AbstractList | In time series analysis, the ability to effectively handle data with varying input lengths and missing data is crucial for accurate modeling. This paper presents the Bag-of-Functions-Driven Imputation framework, which leverages sequence-length independent techniques to decompose time series data while accommodating inputs of differing sizes. Unlike traditional methods that require uniform input lengths, the Padding-BoF framework employs a flexible encoding approach, allowing for the integration of variable-length time series and missing elements in the data. Through a series of experiments, we demonstrate that the BoF framework not only ensures precise reconstruction of the original data but also enhances data imputation capabilities by utilizing decomposed components. The results show that this method offers significant advantages in scenarios involving irregular sampling and disparate operational cycles, making it a valuable tool for applications in fields such as finance, healthcare, and industrial monitoring. |
| Author | Salazar Torres, David Orlando Altinses, Diyar Schwung, Andreas |
| Author_xml | – sequence: 1 givenname: David Orlando surname: Salazar Torres fullname: Salazar Torres, David Orlando email: salazartorres.davidorlando@fh-swf.de organization: South Westphalia University of Applied Sciences,Department of Automation Technology and learning systems,Soest,Germany – sequence: 2 givenname: Diyar surname: Altinses fullname: Altinses, Diyar email: altinses.diyar@fh-swf.de organization: South Westphalia University of Applied Sciences,Department of Automation Technology and learning systems,Soest,Germany – sequence: 3 givenname: Andreas surname: Schwung fullname: Schwung, Andreas email: schwung.andreas@fh-swf.de organization: South Westphalia University of Applied Sciences,Department of Automation Technology and learning systems,Soest,Germany |
| BookMark | eNo10MFOwkAQgOHVaCIib2DivkBxdqfddr0hiDbBeLB6Jdt2CmvoFrvl4Avw3BbQ0ySTP98kc80uXOOIsTsBYyFA36fTNFOoMB5LkNG4X6lISn3GRjrWCaKIpNARnLOBVCEGUsfJFRt5_wUAKAHDUA3YfmY6w9N6u-tMZxvHMyrWzn7vyPMPb92Kd2vij2bFm4rPd644RP6BT8qyJX8MPk1rTb4hnrpe4Qtyq27tuXElf7Wn5HjE9ritib9Ta3t9RkVTbxtvD-INu6zMxtPobw5ZNn_Kpi_B4u05nU4WgdXYBWSSPEYlEgOkKIEwxKiSRVGgyMsYiRREOgFdiVCrXIVlhCTRKKyAoIAEh-z2xFoiWm5bW5v2Z_n_OfwFXk1l0A |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICIT63637.2025.10965229 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331521950 |
| EISSN | 2643-2978 |
| EndPage | 7 |
| ExternalDocumentID | 10965229 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-ea8b73618a0e6e804435f2ccc31bd73ee6059809f1496b64d53e23a63f0e0c083 |
| IEDL.DBID | RIE |
| IngestDate | Wed Apr 30 05:50:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-ea8b73618a0e6e804435f2ccc31bd73ee6059809f1496b64d53e23a63f0e0c083 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10965229 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-March-26 |
| PublicationDateYYYYMMDD | 2025-03-26 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-March-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Conference on Industrial Technology (Online) |
| PublicationTitleAbbrev | ICIT |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203446 |
| Score | 1.9181433 |
| Snippet | In time series analysis, the ability to effectively handle data with varying input lengths and missing data is crucial for accurate modeling. This paper... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Adaptation models Bag of Functions Data models Encoding Finance Imputation Learning systems Medical services Monitoring Synthetic temporal datasets Time series analysis Time series decomposition Time-Invariant Methods |
| Title | Data Imputation Techniques Using the Bag of Functions: Addressing Variable Input Lengths and Missing Data in Time Series Decomposition |
| URI | https://ieeexplore.ieee.org/document/10965229 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8NADD7RigEWXkW8dQNrSpq7Ojk2aKmIVKoOFepWXe6ckoEUtSk_gd-N79ryGBjYoshxIjuR_TmfbcauW1Jjnuc2ECAhkMbYQGUQBpFJ2kYhQGi8p_vxYJCMx2q4blb3vTCI6Mln2HSH_l--nZmlK5XRF66A8gVVY7U4hlWz1ldBRURueh2sOVwkepN20hEIEDHBwKjd3Fz9a4-KDyO9vX8-wD5rfDfk8eFXqDlgW1gest0fswSP2EdXV5qnbkeDNzYfbaazLrjnBXBK9fi9nvJZznsUzfwLd8vvrPVUWBJ4JtzsOql4WpIW3sdyWr0suC4tfypWIv4mBSkvXpG7yhpp76Ljpa_JXw026j2MOo_BeslCUChRBaiTLBbQSnSIgEkoKX3KI2OMaGU2FogEd1QSqpyQFGQgbVtgJDSIPMTQUP52zOrlrMQTxgkr2jgDl7FISfg2Q2i3cqOkJAyHWp6yhrPo5G01RmOyMebZH-fP2Y7zmyN8RXDB6tV8iZds27xXxWJ-5Z3_Cem6sLQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54ScCF1xBvcuBa6JrUbbjxmlaxTRwqxG1KExd6oEOs8BP43TjZxuPAgVtVuW7lpLI_57PN2ElbaizL0gYCJATSGBuoAsIgMmlsFAKExq90LxkM0ocHdTctVve1MIjoyWd46i79Wb4dmTeXKqM_XAHFC2qeLcZSRuGkXOsrpSIi178OpiwuEj7LrrIcBIiEgGAUn86e_zVJxTuSzto_P2Gdtb5L8vjdl7PZYHNYb7LVH90Et9jHtW40z9yUBm9uns_6s465ZwZwCvb4pX7ko5J3yJ_5LXfOL6z1ZFgSuCfk7GqpeFaTFt7D-rF5GnNdW96vJiL-JRUpr56Ru9waab9Gx0yf0r9aLO_c5FfdYDpmIaiUaALUaZEIaKc6RMA0lBRAlZExRrQLmwhEAjwqDVVJWAoKkDYWGAkNogwxNBTBbbOFelTjDuOEFm1SgItZpCSEWyDE7dIoKQnFoZa7rOUsOnyZNNIYzoy598f9Y7bczfu9YS8b3O6zFbeGjv4VwQFbaF7f8JAtmfemGr8e-Y3wCUbPs_s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Industrial+Technology+%28Online%29&rft.atitle=Data+Imputation+Techniques+Using+the+Bag+of+Functions%3A+Addressing+Variable+Input+Lengths+and+Missing+Data+in+Time+Series+Decomposition&rft.au=Salazar+Torres%2C+David+Orlando&rft.au=Altinses%2C+Diyar&rft.au=Schwung%2C+Andreas&rft.date=2025-03-26&rft.pub=IEEE&rft.eissn=2643-2978&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FICIT63637.2025.10965229&rft.externalDocID=10965229 |