Data Imputation Techniques Using the Bag of Functions: Addressing Variable Input Lengths and Missing Data in Time Series Decomposition

In time series analysis, the ability to effectively handle data with varying input lengths and missing data is crucial for accurate modeling. This paper presents the Bag-of-Functions-Driven Imputation framework, which leverages sequence-length independent techniques to decompose time series data whi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE International Conference on Industrial Technology (Online) pp. 1 - 7
Main Authors: Salazar Torres, David Orlando, Altinses, Diyar, Schwung, Andreas
Format: Conference Proceeding
Language:English
Published: IEEE 26.03.2025
Subjects:
ISSN:2643-2978
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In time series analysis, the ability to effectively handle data with varying input lengths and missing data is crucial for accurate modeling. This paper presents the Bag-of-Functions-Driven Imputation framework, which leverages sequence-length independent techniques to decompose time series data while accommodating inputs of differing sizes. Unlike traditional methods that require uniform input lengths, the Padding-BoF framework employs a flexible encoding approach, allowing for the integration of variable-length time series and missing elements in the data. Through a series of experiments, we demonstrate that the BoF framework not only ensures precise reconstruction of the original data but also enhances data imputation capabilities by utilizing decomposed components. The results show that this method offers significant advantages in scenarios involving irregular sampling and disparate operational cycles, making it a valuable tool for applications in fields such as finance, healthcare, and industrial monitoring.
AbstractList In time series analysis, the ability to effectively handle data with varying input lengths and missing data is crucial for accurate modeling. This paper presents the Bag-of-Functions-Driven Imputation framework, which leverages sequence-length independent techniques to decompose time series data while accommodating inputs of differing sizes. Unlike traditional methods that require uniform input lengths, the Padding-BoF framework employs a flexible encoding approach, allowing for the integration of variable-length time series and missing elements in the data. Through a series of experiments, we demonstrate that the BoF framework not only ensures precise reconstruction of the original data but also enhances data imputation capabilities by utilizing decomposed components. The results show that this method offers significant advantages in scenarios involving irregular sampling and disparate operational cycles, making it a valuable tool for applications in fields such as finance, healthcare, and industrial monitoring.
Author Salazar Torres, David Orlando
Altinses, Diyar
Schwung, Andreas
Author_xml – sequence: 1
  givenname: David Orlando
  surname: Salazar Torres
  fullname: Salazar Torres, David Orlando
  email: salazartorres.davidorlando@fh-swf.de
  organization: South Westphalia University of Applied Sciences,Department of Automation Technology and learning systems,Soest,Germany
– sequence: 2
  givenname: Diyar
  surname: Altinses
  fullname: Altinses, Diyar
  email: altinses.diyar@fh-swf.de
  organization: South Westphalia University of Applied Sciences,Department of Automation Technology and learning systems,Soest,Germany
– sequence: 3
  givenname: Andreas
  surname: Schwung
  fullname: Schwung, Andreas
  email: schwung.andreas@fh-swf.de
  organization: South Westphalia University of Applied Sciences,Department of Automation Technology and learning systems,Soest,Germany
BookMark eNo10MFOwkAQgOHVaCIib2DivkBxdqfddr0hiDbBeLB6Jdt2CmvoFrvl4Avw3BbQ0ySTP98kc80uXOOIsTsBYyFA36fTNFOoMB5LkNG4X6lISn3GRjrWCaKIpNARnLOBVCEGUsfJFRt5_wUAKAHDUA3YfmY6w9N6u-tMZxvHMyrWzn7vyPMPb92Kd2vij2bFm4rPd644RP6BT8qyJX8MPk1rTb4hnrpe4Qtyq27tuXElf7Wn5HjE9ritib9Ta3t9RkVTbxtvD-INu6zMxtPobw5ZNn_Kpi_B4u05nU4WgdXYBWSSPEYlEgOkKIEwxKiSRVGgyMsYiRREOgFdiVCrXIVlhCTRKKyAoIAEh-z2xFoiWm5bW5v2Z_n_OfwFXk1l0A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIT63637.2025.10965229
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331521950
EISSN 2643-2978
EndPage 7
ExternalDocumentID 10965229
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-ea8b73618a0e6e804435f2ccc31bd73ee6059809f1496b64d53e23a63f0e0c083
IEDL.DBID RIE
IngestDate Wed Apr 30 05:50:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-ea8b73618a0e6e804435f2ccc31bd73ee6059809f1496b64d53e23a63f0e0c083
PageCount 7
ParticipantIDs ieee_primary_10965229
PublicationCentury 2000
PublicationDate 2025-March-26
PublicationDateYYYYMMDD 2025-03-26
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-26
  day: 26
PublicationDecade 2020
PublicationTitle IEEE International Conference on Industrial Technology (Online)
PublicationTitleAbbrev ICIT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203446
Score 1.9185543
Snippet In time series analysis, the ability to effectively handle data with varying input lengths and missing data is crucial for accurate modeling. This paper...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Adaptation models
Bag of Functions
Data models
Encoding
Finance
Imputation
Learning systems
Medical services
Monitoring
Synthetic temporal datasets
Time series analysis
Time series decomposition
Time-Invariant Methods
Title Data Imputation Techniques Using the Bag of Functions: Addressing Variable Input Lengths and Missing Data in Time Series Decomposition
URI https://ieeexplore.ieee.org/document/10965229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQALryLe8sCaYset47BBS0UkqDpEqFvl2JeSgRS1KT-B383ZTQsMDGxRdLlEZ0f38HffEXLNcsu7GiDIMtzBHQU80IqLoGsyxSPLDYjMD5uIhkM1Hsejulnd98IAgAefQdtd-rN8OzNLVyrDPzyWGC_EDdKIomjVrLUpqIjQsdfJGsOFojdJL0mlkCLCNDDsttdP_5qj4t3IYO-fH7BPWt8NeXS0cTUHZAvKQ7L7g0vwiHz2daVp4mY0eGPTdM3OuqAeF0Ax1KP3ekpnOR2gN_Mb7pbeWeuhsCjwgnmz66SiSYla6BOU0-p1QXVp6XOxEvEvKVB58QbUVdZQex8cLr0Gf7VIOnhIe49BPWQhKGJRBaBVFgnJlWYgQbEOhk95aIwRPLORAMB0J1YszjGTkpns2K6AUGgpcgbMYPx2TJrlrIQTQkXGtLDCMQ46nnqhFGcABiMQE5o4z09Jy1l08r6i0ZisjXn2x_1zsuPWzQG-QnlBmtV8CZdk23xUxWJ-5Rf_C07lsTI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN5oNVEvvmp8uwevVJaFZfGmrU2JbeOBmN6aZXdQDlJjqT_B3-3stvVx8OCNkGEgw5B58M03hFz6hWGRAvDyHD04lMA8JRn3Ip1LFhumgedu2UQ8HMrRKHlYDKu7WRgAcOAzaNlD9y_fTPTMtsrwC08E5gvJKlmLwjBg83Gtr5YKDyx_nViguFD4Km2nmeCCx1gIBlFref2vTSoukHS3__kIO6T5PZJHH76CzS5ZgWqPbP1gE9wnHx1VK5raLQ3O3DRb8rNOqUMGUEz26K16opOCdjGeOZe7pjfGODAsCjxi5WxnqWhaoRbah-qpfp5SVRk6KOci7iYlKi9fgNreGmrvgEWmL-BfTZJ177J2z1usWfDKhNceKJnHXDCpfBAg_RATqCLQWnOWm5gDYMGTSD8psJYSuQhNxCHgSvDCB19jBndAGtWkgkNCee4rbrjlHLRM9VxK5gNozEF0oJOiOCJNa9Hx65xIY7w05vEf5y_IRi8b9Mf9dHh_QjbtO7Twr0Cckkb9NoMzsq7f63L6du4c4ROyD7R5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Industrial+Technology+%28Online%29&rft.atitle=Data+Imputation+Techniques+Using+the+Bag+of+Functions%3A+Addressing+Variable+Input+Lengths+and+Missing+Data+in+Time+Series+Decomposition&rft.au=Salazar+Torres%2C+David+Orlando&rft.au=Altinses%2C+Diyar&rft.au=Schwung%2C+Andreas&rft.date=2025-03-26&rft.pub=IEEE&rft.eissn=2643-2978&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FICIT63637.2025.10965229&rft.externalDocID=10965229