An improved mixed-precision FEAST algorithm for solving symmetric eigenvalue problems
Solving symmetric eigenvalue problems is vital in many areas of scientific computing. FEAST is a well-known package designed for large-scale eigenvalue problems, incorporating mixed-precision techniques to accelerate linear equation solving. Unlike FEAST's approach, this work introduces a new m...
Uloženo v:
| Vydáno v: | 2024 IEEE International Conference on High Performance Computing and Communications (HPCC) s. 721 - 728 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
13.12.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Solving symmetric eigenvalue problems is vital in many areas of scientific computing. FEAST is a well-known package designed for large-scale eigenvalue problems, incorporating mixed-precision techniques to accelerate linear equation solving. Unlike FEAST's approach, this work introduces a new mixed-precision method that approximates the original eigenvalue problem at a lower precision to quickly provide a good initial guess. These results are then used to accelerate the convergence in working precision. Extensive experiments on large sparse matrices from real applications and randomly generated banded matrices demonstrate the effectiveness of this approach. In appropriate circumstances, our improved mixed-precision FEAST algorithm achieves an average speedup of 1.58× compared to the double-precision FEAST algorithm, with a maximum speedup of 1.79×. Additionally, compared to the original mixed-precision approach in the latest FEAST library, our method offers up to a 1.43× performance improvement. |
|---|---|
| AbstractList | Solving symmetric eigenvalue problems is vital in many areas of scientific computing. FEAST is a well-known package designed for large-scale eigenvalue problems, incorporating mixed-precision techniques to accelerate linear equation solving. Unlike FEAST's approach, this work introduces a new mixed-precision method that approximates the original eigenvalue problem at a lower precision to quickly provide a good initial guess. These results are then used to accelerate the convergence in working precision. Extensive experiments on large sparse matrices from real applications and randomly generated banded matrices demonstrate the effectiveness of this approach. In appropriate circumstances, our improved mixed-precision FEAST algorithm achieves an average speedup of 1.58× compared to the double-precision FEAST algorithm, with a maximum speedup of 1.79×. Additionally, compared to the original mixed-precision approach in the latest FEAST library, our method offers up to a 1.43× performance improvement. |
| Author | Li, Shengguo Li, Tiejun Xie, Yi Shao, Meiyue Ren, Ruixuan |
| Author_xml | – sequence: 1 givenname: Yi surname: Xie fullname: Xie, Yi email: xieyi00@nudt.edu.cn organization: College of Computer Science and Technology National University of Defense Technology,Changsha,China – sequence: 2 givenname: Shengguo surname: Li fullname: Li, Shengguo email: nudtlsg@nudt.edu.cn organization: College of Computer Science and Technology National University of Defense Technology,Changsha,China – sequence: 3 givenname: Tiejun surname: Li fullname: Li, Tiejun email: tjli@nudt.edu.cn organization: College of Computer Science and Technology National University of Defense Technology,Changsha,China – sequence: 4 givenname: Meiyue surname: Shao fullname: Shao, Meiyue email: myshao@fudan.edu.cn organization: School of Data Science and MOE Key Laboratory for Computational Physical Sciences Fudan University,Shanghai,China – sequence: 5 givenname: Ruixuan surname: Ren fullname: Ren, Ruixuan email: renruixuan18@nudt.edu.cn organization: College of Computer Science and Technology National University of Defense Technology,Changsha,China |
| BookMark | eNotz09LwzAYgPEIetC5b7BDvkDrmz9NmmMpmxMGE6znkTZva6BpS1qL-_YO9PTcfvA8kfthHJCQHYOUMTAvx_eyVJJrmXLgMgVgAHdka7TJhWCZBKnEI_ksBurDFMcVHQ3-B10yRWz87MeBHvbFR0Vt343RL1-BtmOk89ivfujofA0Bl-gbir7DYbX9N9KbU_cY5mfy0Np-xu1_N6Q67KvymJzOr29lcUq8EUuCGrhtrNS1YY0z1rEcbZO3DjKRK8UkGolMag7QGuOErWvMG8iUA60AuNiQ3R_rEfEyRR9svF5u97lgkotfBC5PQA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/HPCC64274.2024.00100 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331540463 |
| EndPage | 728 |
| ExternalDocumentID | 11083142 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-e702aca47b91cd9ad18eac8fd05386614e94e147200f99d3abbe8c056d0760023 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jul 30 06:15:19 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-e702aca47b91cd9ad18eac8fd05386614e94e147200f99d3abbe8c056d0760023 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_11083142 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Dec.-13 |
| PublicationDateYYYYMMDD | 2024-12-13 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec.-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 IEEE International Conference on High Performance Computing and Communications (HPCC) |
| PublicationTitleAbbrev | HPCC |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8924191 |
| Snippet | Solving symmetric eigenvalue problems is vital in many areas of scientific computing. FEAST is a well-known package designed for large-scale eigenvalue... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 721 |
| SubjectTerms | Banded Matrix Convergence Eigenvalues and eigenfunctions FEAST High performance computing Iterative methods Libraries Linear systems Mixed-Precision Algorithm Performance gain Scientific computing Sparse matrices Symmetric Eigenvalue Problem Symmetric matrices |
| Title | An improved mixed-precision FEAST algorithm for solving symmetric eigenvalue problems |
| URI | https://ieeexplore.ieee.org/document/11083142 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4qHjypWPFNDl7XNpu0SY6ltPRUClboreQx1QV3W_oQ_ffOpOvj4sFbyCUwmck8Mt98jN1H4Yyycp5pL_JMEYjLdXJMVfI2SNuxoL1JZBN6NDLTqR3XYPWEhQGA1HwGD7RMf_lxEbZUKmtSy7oUCl_cfa07O7BWDYcTLdscjns9DKc1lUpyGootCLf2izQl-YzB8T9PO2GNH_QdH3_7lVO2B9UZe-pWvEgFAIi8LN4hZstVzY_DB_3u44S71-cFpvovJcdAlKNOUa2Arz_KklizAgcavEnDvYHXNDLrBpsM-pPeMKspEbLCyk0GupW74JT2VoRoXRQGH04zj2hKhjwtWAVCaVT9ubVROu_BBIxx4u4DTp6zg2pRwQXjxqL9OW-sQwfv25gkg4wY_3gVgwnOX7IGiWS23A29mH1J4-qP_Wt2RFKnTg8hb9jBZrWFW3YY3jbFenWXruoTMrGXBA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5SBT2pWHE3B69jm0mmSY6ltFSspeAIvZUsrzrgTEsX0X9v3nRcLh68hVwCycvbv_cRcuOZUULzaSQtiyOBIC7TikOoEifAdUuDtKokm5DDoRqP9agCq5dYGAAom8_gFpdlLd_P3BpTZQ1sWedMBI27nQgRNzdwrQoQx5q60R91OsGhlpgsiXEsNkPk2i_alNJq9Pb_ed4Bqf_g7-jo27Icki0ojshTu6BZmQIAT_PsHXw0X1QMObTXbT-m1Lw-z0Kw_5LT4IrSIFWYLaDLjzxH3ixHAUdv4nhvoBWRzLJO0l437fSjihQhyjRfRSCbsXFGSKuZ89p4poLqVFMfPpNCWwtaABMyCP9Ua8-NtaBc8HL8pgTHj0mtmBVwQqjS4Qcaq7QJJt4mIUwG7oMHZIV3yhl7Sup4JZP5ZuzF5Os2zv7Yvya7_fRhMBncDe_PyR6-APZ9MH5BaqvFGi7JjntbZcvFVflsnzuamks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+High+Performance+Computing+and+Communications+%28HPCC%29&rft.atitle=An+improved+mixed-precision+FEAST+algorithm+for+solving+symmetric+eigenvalue+problems&rft.au=Xie%2C+Yi&rft.au=Li%2C+Shengguo&rft.au=Li%2C+Tiejun&rft.au=Shao%2C+Meiyue&rft.date=2024-12-13&rft.pub=IEEE&rft.spage=721&rft.epage=728&rft_id=info:doi/10.1109%2FHPCC64274.2024.00100&rft.externalDocID=11083142 |