An improved mixed-precision FEAST algorithm for solving symmetric eigenvalue problems

Solving symmetric eigenvalue problems is vital in many areas of scientific computing. FEAST is a well-known package designed for large-scale eigenvalue problems, incorporating mixed-precision techniques to accelerate linear equation solving. Unlike FEAST's approach, this work introduces a new m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 IEEE International Conference on High Performance Computing and Communications (HPCC) s. 721 - 728
Hlavní autoři: Xie, Yi, Li, Shengguo, Li, Tiejun, Shao, Meiyue, Ren, Ruixuan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 13.12.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Solving symmetric eigenvalue problems is vital in many areas of scientific computing. FEAST is a well-known package designed for large-scale eigenvalue problems, incorporating mixed-precision techniques to accelerate linear equation solving. Unlike FEAST's approach, this work introduces a new mixed-precision method that approximates the original eigenvalue problem at a lower precision to quickly provide a good initial guess. These results are then used to accelerate the convergence in working precision. Extensive experiments on large sparse matrices from real applications and randomly generated banded matrices demonstrate the effectiveness of this approach. In appropriate circumstances, our improved mixed-precision FEAST algorithm achieves an average speedup of 1.58× compared to the double-precision FEAST algorithm, with a maximum speedup of 1.79×. Additionally, compared to the original mixed-precision approach in the latest FEAST library, our method offers up to a 1.43× performance improvement.
AbstractList Solving symmetric eigenvalue problems is vital in many areas of scientific computing. FEAST is a well-known package designed for large-scale eigenvalue problems, incorporating mixed-precision techniques to accelerate linear equation solving. Unlike FEAST's approach, this work introduces a new mixed-precision method that approximates the original eigenvalue problem at a lower precision to quickly provide a good initial guess. These results are then used to accelerate the convergence in working precision. Extensive experiments on large sparse matrices from real applications and randomly generated banded matrices demonstrate the effectiveness of this approach. In appropriate circumstances, our improved mixed-precision FEAST algorithm achieves an average speedup of 1.58× compared to the double-precision FEAST algorithm, with a maximum speedup of 1.79×. Additionally, compared to the original mixed-precision approach in the latest FEAST library, our method offers up to a 1.43× performance improvement.
Author Li, Shengguo
Li, Tiejun
Xie, Yi
Shao, Meiyue
Ren, Ruixuan
Author_xml – sequence: 1
  givenname: Yi
  surname: Xie
  fullname: Xie, Yi
  email: xieyi00@nudt.edu.cn
  organization: College of Computer Science and Technology National University of Defense Technology,Changsha,China
– sequence: 2
  givenname: Shengguo
  surname: Li
  fullname: Li, Shengguo
  email: nudtlsg@nudt.edu.cn
  organization: College of Computer Science and Technology National University of Defense Technology,Changsha,China
– sequence: 3
  givenname: Tiejun
  surname: Li
  fullname: Li, Tiejun
  email: tjli@nudt.edu.cn
  organization: College of Computer Science and Technology National University of Defense Technology,Changsha,China
– sequence: 4
  givenname: Meiyue
  surname: Shao
  fullname: Shao, Meiyue
  email: myshao@fudan.edu.cn
  organization: School of Data Science and MOE Key Laboratory for Computational Physical Sciences Fudan University,Shanghai,China
– sequence: 5
  givenname: Ruixuan
  surname: Ren
  fullname: Ren, Ruixuan
  email: renruixuan18@nudt.edu.cn
  organization: College of Computer Science and Technology National University of Defense Technology,Changsha,China
BookMark eNotz09LwzAYgPEIetC5b7BDvkDrmz9NmmMpmxMGE6znkTZva6BpS1qL-_YO9PTcfvA8kfthHJCQHYOUMTAvx_eyVJJrmXLgMgVgAHdka7TJhWCZBKnEI_ksBurDFMcVHQ3-B10yRWz87MeBHvbFR0Vt343RL1-BtmOk89ivfujofA0Bl-gbir7DYbX9N9KbU_cY5mfy0Np-xu1_N6Q67KvymJzOr29lcUq8EUuCGrhtrNS1YY0z1rEcbZO3DjKRK8UkGolMag7QGuOErWvMG8iUA60AuNiQ3R_rEfEyRR9svF5u97lgkotfBC5PQA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HPCC64274.2024.00100
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331540463
EndPage 728
ExternalDocumentID 11083142
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-e702aca47b91cd9ad18eac8fd05386614e94e147200f99d3abbe8c056d0760023
IEDL.DBID RIE
IngestDate Wed Jul 30 06:15:19 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-e702aca47b91cd9ad18eac8fd05386614e94e147200f99d3abbe8c056d0760023
PageCount 8
ParticipantIDs ieee_primary_11083142
PublicationCentury 2000
PublicationDate 2024-Dec.-13
PublicationDateYYYYMMDD 2024-12-13
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-13
  day: 13
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on High Performance Computing and Communications (HPCC)
PublicationTitleAbbrev HPCC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8925252
Snippet Solving symmetric eigenvalue problems is vital in many areas of scientific computing. FEAST is a well-known package designed for large-scale eigenvalue...
SourceID ieee
SourceType Publisher
StartPage 721
SubjectTerms Banded Matrix
Convergence
Eigenvalues and eigenfunctions
FEAST
High performance computing
Iterative methods
Libraries
Linear systems
Mixed-Precision Algorithm
Performance gain
Scientific computing
Sparse matrices
Symmetric Eigenvalue Problem
Symmetric matrices
Title An improved mixed-precision FEAST algorithm for solving symmetric eigenvalue problems
URI https://ieeexplore.ieee.org/document/11083142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmACRBFveWANjRs3tscqatWpqkSRulWOfYFIJK36Evx77tzwWBjYoiyR7nIPf77vPsYe0KkatDMY35agmy7mQaFtJJ11Ji5SUzgZxCbUeKxnMzNpyOqBCwMAYfgMHukx3OX7hdsSVNahkfVESMy4h0qle7JWQ4cTsemMJlmG7bQiqKRLS7EF8dZ-iaaEmjE8-efXTln7h33HJ9915YwdQH3Onvs1LwMAAJ5X5Tv4aLlq9HH4cNB_mnL79rLAo_5rxbER5fhPEVbA1x9VRapZjgMt3qTl3sAbGZl1m02Hg2k2ihpJhKg0ySYCFXets1LlRjhvrBcaE6cuPIaSpkoLRoJAi8dxYYxPbJ6jI7DH8fsLuOSCtepFDZeM-7yXOp8qm_es9InRGLm5gdQqmcZO6yvWJpPMl_ulF_Mva1z_8f6GHZPVadJDJLestVlt4Y4dud2mXK_ug6s-AQnEl4E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQYIJEEW88cAaaiduYo9V1aqIUlUiSN0qx75AJJJWfSD49_jc8FgY2KIske5yD3--7z5CbpxTJUijXHxrhG5Clwe51IEw2iiWxyo3wotNJKORnEzUuCarey4MAPjhM7jFR3-Xb2dmjVBZC0fWIy5cxt1uCxGyDV2rJsRxplqDcbfrGuoEwZIQ12JzZK79kk3xVaO__8_vHZDmD_-Ojr8ryyHZguqIPHUqWngIACwti3ewwXxRK-TQfq_zmFL9-jxzh_2XkrpWlLq_CtECuvwoS9TNMhRw9Sau9wZaC8ksmyTt99LuIKhFEYJCRasAEhZqo0WSKW6s0pZLlzplbl0wSay1oARwZ3PGcqVspLPMucJ1OXZzBRcdk0Y1q-CEUJu1Y2PjRGdtLWykpIvdTEGsExEzI-UpaaJJpvPN2ovplzXO_nh_TXYH6cNwOrwb3Z-TPfQAzn3w6II0Vos1XJId87Yqlosr77ZPGUuayA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+High+Performance+Computing+and+Communications+%28HPCC%29&rft.atitle=An+improved+mixed-precision+FEAST+algorithm+for+solving+symmetric+eigenvalue+problems&rft.au=Xie%2C+Yi&rft.au=Li%2C+Shengguo&rft.au=Li%2C+Tiejun&rft.au=Shao%2C+Meiyue&rft.date=2024-12-13&rft.pub=IEEE&rft.spage=721&rft.epage=728&rft_id=info:doi/10.1109%2FHPCC64274.2024.00100&rft.externalDocID=11083142