Decision Tree with Light Gradient Boosting Algorithm for University Teacher Performance Evaluation

University teacher performance evaluation analyze educators depending on teaching effectiveness, student engagement, and research contributors. It aims to ensure continuous professional development and quality education. Moreover, it contains technology and different teaching approach for engaging s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 3rd International Conference on Integrated Circuits and Communication Systems (ICICACS) s. 1 - 5
Hlavní autoři: Guo, Jianxun, Zheng, Beibei, Zhang, Lei, Li, Biao, Guo, Haolin, Chen, Ming
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 21.02.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract University teacher performance evaluation analyze educators depending on teaching effectiveness, student engagement, and research contributors. It aims to ensure continuous professional development and quality education. Moreover, it contains technology and different teaching approach for engaging students and rapid deeper learning. However, it has challenges of engaging students with different learning styles by managing efficient content delivery. This results in gap at student participation and comprehension that minimize overall learning outcomes. This research proposes Decision Tree with Light Gradient Boosting Algorithm (DT-LGBA) to evaluate the performance for university teachers. DT-LGBA enable for accurate determination of primary factors to teach performance by effectively managing both non-linear and linear relationship which provides reliable evaluation outcomes. DT makes easy interpretation to influence teacher performance because it presents clear decision rules whereas LGBA provides effective in managing intricate non-linear relationships that makes high model performance in teaching. Therefore, this combination makes both clarity and accurate performance in classroom dynamics. The proposed DT-LGBA achieves a high teaching evaluation effect of 96.38% compared to existing techniques like Random Forest (RF) and Support Vector Machine (SVM).
AbstractList University teacher performance evaluation analyze educators depending on teaching effectiveness, student engagement, and research contributors. It aims to ensure continuous professional development and quality education. Moreover, it contains technology and different teaching approach for engaging students and rapid deeper learning. However, it has challenges of engaging students with different learning styles by managing efficient content delivery. This results in gap at student participation and comprehension that minimize overall learning outcomes. This research proposes Decision Tree with Light Gradient Boosting Algorithm (DT-LGBA) to evaluate the performance for university teachers. DT-LGBA enable for accurate determination of primary factors to teach performance by effectively managing both non-linear and linear relationship which provides reliable evaluation outcomes. DT makes easy interpretation to influence teacher performance because it presents clear decision rules whereas LGBA provides effective in managing intricate non-linear relationships that makes high model performance in teaching. Therefore, this combination makes both clarity and accurate performance in classroom dynamics. The proposed DT-LGBA achieves a high teaching evaluation effect of 96.38% compared to existing techniques like Random Forest (RF) and Support Vector Machine (SVM).
Author Chen, Ming
Li, Biao
Zheng, Beibei
Zhang, Lei
Guo, Haolin
Guo, Jianxun
Author_xml – sequence: 1
  givenname: Jianxun
  surname: Guo
  fullname: Guo, Jianxun
  email: 13821964098@163.com
  organization: Tianjin University of Technology and Education,Tianjin,China
– sequence: 2
  givenname: Beibei
  surname: Zheng
  fullname: Zheng, Beibei
  organization: Zhuobei Technology (Wuhan) Co., Ltd,Wuhan,China
– sequence: 3
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Tianjin Data Development Center,Tianjin,China
– sequence: 4
  givenname: Biao
  surname: Li
  fullname: Li, Biao
  organization: Tianjin University of Technology and Education,Tianjin,China
– sequence: 5
  givenname: Haolin
  surname: Guo
  fullname: Guo, Haolin
  organization: Tianjin Academy of Fine Arts,Tianjin,China
– sequence: 6
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  organization: Tianjin University of Technology and Education,Tianjin,China
BookMark eNo1j0FLxDAUhCPoQdf9Bx6C961J06TJca3rulBQsJ6X1_alDbSppHFl_70F9TQwM3zM3JBLP3kk5J6zhHNmHg7FodgW70ryXCcpS2WyuEoLzi_I2uRGC8El05lU16R-wsbNbvK0Coj028Welq7rI90HaB36SB-naY7Od3Q7dFNYCiO1U6Af3p0wzC6eaYXQ9BjoG4YlGcE3SHcnGL4gLuRbcmVhmHH9pytSPe-q4mVTvu6XoeXGGRE3mGY2Qw5S101bg8U2Q7QAPMe60SyrLUoQtlEZkyjQgOJWoWjrtNXMcCtW5O4X6xDx-BncCOF8_H8ufgDx_1eC
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICACS65178.2025.10968311
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISBN 9798331508456
EndPage 5
ExternalDocumentID 10968311
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-e24f4e1a58bcdbafed4eefaa17ebc804bfe5a3fc6405e3e9a61f6e3db2d8091f3
IEDL.DBID RIE
IngestDate Wed Apr 30 05:50:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-e24f4e1a58bcdbafed4eefaa17ebc804bfe5a3fc6405e3e9a61f6e3db2d8091f3
PageCount 5
ParticipantIDs ieee_primary_10968311
PublicationCentury 2000
PublicationDate 2025-Feb.-21
PublicationDateYYYYMMDD 2025-02-21
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb.-21
  day: 21
PublicationDecade 2020
PublicationTitle 2025 3rd International Conference on Integrated Circuits and Communication Systems (ICICACS)
PublicationTitleAbbrev ICICACS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8995433
Snippet University teacher performance evaluation analyze educators depending on teaching effectiveness, student engagement, and research contributors. It aims to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Boosting
decision tree
Decision trees
Education
Integrated circuit modeling
learning
light gradient boosting algorithm
Performance evaluation
Radio frequency
Random forests
Reliability
students
Support vector machines
university teacher performance evaluation
Title Decision Tree with Light Gradient Boosting Algorithm for University Teacher Performance Evaluation
URI https://ieeexplore.ieee.org/document/10968311
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8MgGCe6ePDka8Z3OHjtXEtb4DjrpkvMssQddlv44MMs0dV0nX-_wLotHjx4ayiEhOcH_B6E3Ls1EcBqcBMJRZRKlBEIkUVePR8TxVWsTTCb4KORmE7luCGrBy4MIgbwGXb8Z3jLN6Ve-asyN8NlLphn8u5znq_JWo2QqPv1MCyGRa94y7OYe9BWknU2BX5Zp4SdY3D0zzqPSXvHwaPj7e5yQvZwceo9lhs8xhmBp8Yeh04qROovVOmrP2rT5yrguGr6WJZLD2umvY_3snIZPqmLUekOjEEbQWc63vEHaH8rAN4mk0F_UrxEjWNCNJesjjBJbYqxygRoA8qiSRGtUjFH0KKbgsVMMatzF6UhQ6ny2ObIDCRGuLjBsnPSWpQLvCAUuPYPnhYSm6TcGNmFxA06bhhYAcxekrZvq9nXWhNjtmmmqz_Sr8mh75FABo9vSKuuVnhLDvR3PV9Wd6EnfwBxaKSx
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8IwGG8MmujJF8a3PXgdsrbbuiNOECISEnfgRvr4akiUmTH8-23LgHjw4G3p2jTp82v7eyB0b9dEKY2SdiIBD1gKaSA5jwKnng9EJCJU2ptNJKMRn0zScU1W91wYAPDgM2i5T_-Wrwu1dFdldoanMaeOybsbMUbaK7pWLSVqfz4MskHWyd7iKEwcbItErXWRX-Ypfu_oHf6z1iPU3LLw8HizvxyjHZifOJflGpFxiuRTbZCD8xIAuytVPHSHbfxceiRXhR-LYuGAzbjz8V6UNsMntlEq3sIxcC3pjMdbBgHubiTAmyjvdfOsH9SeCcEspVUAhBkGoYi4VFoKA5oBGCHCBKTibSYNRIIaFds4DSikIg5NDFRLormNHAw9Q415MYdzhGWi3JOnkcQQlmidtiWxwy7RVBouqblATddW06-VKsZ03UyXf6Tfof1-_jqcDgejlyt04HrHU8PDa9SoyiXcoD31Xc0W5a3v1R8rn6f4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+3rd+International+Conference+on+Integrated+Circuits+and+Communication+Systems+%28ICICACS%29&rft.atitle=Decision+Tree+with+Light+Gradient+Boosting+Algorithm+for+University+Teacher+Performance+Evaluation&rft.au=Guo%2C+Jianxun&rft.au=Zheng%2C+Beibei&rft.au=Zhang%2C+Lei&rft.au=Li%2C+Biao&rft.date=2025-02-21&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICICACS65178.2025.10968311&rft.externalDocID=10968311