Comparative Analysis of Battery Degradation Models for Optimal Operation of a Hybrid Power Plant in the Day-Ahead Market
Battery degradation significantly impacts the operational costs and profitability of hybrid power plants (HPPs) participating in the day-ahead (DA) market. This paper conducts a comparative analysis of the effectiveness of three battery degradation models. The models calculate the battery degradatio...
Uložené v:
| Vydané v: | 2025 IEEE Kiel PowerTech s. 1 - 6 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
29.06.2025
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Battery degradation significantly impacts the operational costs and profitability of hybrid power plants (HPPs) participating in the day-ahead (DA) market. This paper conducts a comparative analysis of the effectiveness of three battery degradation models. The models calculate the battery degradation as a function of the energy throughput (TP model), the discharge maneuvers (DM model) and based on the Rainflow cycle counting algorithm (RF model). A deterministic mixed-integer linear programming model is developed to maximize revenue of HPPs participating in the DA market considering battery degradation costs. Numerical results reveal that the TP model provides the highest profitability in the DA energy market with the lowest computational complexity, while the RF and DM models capture the battery aging with higher accuracy. This comparative analysis offers some useful insights for selecting appropriate degradation models for better operational performance and longer battery life. |
|---|---|
| AbstractList | Battery degradation significantly impacts the operational costs and profitability of hybrid power plants (HPPs) participating in the day-ahead (DA) market. This paper conducts a comparative analysis of the effectiveness of three battery degradation models. The models calculate the battery degradation as a function of the energy throughput (TP model), the discharge maneuvers (DM model) and based on the Rainflow cycle counting algorithm (RF model). A deterministic mixed-integer linear programming model is developed to maximize revenue of HPPs participating in the DA market considering battery degradation costs. Numerical results reveal that the TP model provides the highest profitability in the DA energy market with the lowest computational complexity, while the RF and DM models capture the battery aging with higher accuracy. This comparative analysis offers some useful insights for selecting appropriate degradation models for better operational performance and longer battery life. |
| Author | Ghanaee, Elahe Perez-Diaz, Juan Ignacio Chazarra, Manuel Najera, Jorge Fernandez-Munoz, Daniel |
| Author_xml | – sequence: 1 givenname: Elahe surname: Ghanaee fullname: Ghanaee, Elahe email: elahe.ghanaee@upm.es organization: Universidad Politécnica de Madrid,ETSI Caminos, Canales y Puertos,Madrid,Spain – sequence: 2 givenname: Juan Ignacio surname: Perez-Diaz fullname: Perez-Diaz, Juan Ignacio email: ji.perez@upm.es organization: Universidad Politécnica de Madrid,ETSI Caminos, Canales y Puertos,Madrid,Spain – sequence: 3 givenname: Daniel surname: Fernandez-Munoz fullname: Fernandez-Munoz, Daniel email: daniel.fernandezm@upm.es organization: Universidad Politécnica de Madrid,ETSI Telecomunicación,Madrid,Spain – sequence: 4 givenname: Jorge surname: Najera fullname: Najera, Jorge email: jorge.najera@ciemat.es organization: Unidad de Accionamientos Eléctricos,CIEMAT,Madrid,Spain – sequence: 5 givenname: Manuel surname: Chazarra fullname: Chazarra, Manuel email: manuel.chazarra@upm.es organization: Universidad Politécnica de Madrid,ETSI Caminos, Canales y Puertos,Madrid,Spain |
| BookMark | eNo1kDFPwzAUhI0EA5T-A4Y3sKbYcdLYY2ihRWrVDt2rl_iZWKRx5VhA_j0RhemGT3e6uzt23fmOGHsUfCYE1097_0XhQHWTaz3PZylP8xEIxaXMrthUF1pJKfJM6mJ-y74X_nTGgNF9EpQdtkPvevAWnjFGCgMs6T2gGbnvYOsNtT1YH2B3ju6E7agULnD0IKyHKjgDvx1g32IXwXUQG4IlDknZEBrYYvigeM9uLLY9Tf90wg6vL4fFOtnsVm-LcpM4LWNiqKrTIhWFrAquUmMyYVNpFFpb28xoKaq80kLNVZUhKrIaueY5H8epOuNWTtjDJdYR0fEcxtJhOP7_IX8AfJdeDQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PowerTech59965.2025.11180334 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331543976 |
| EndPage | 6 |
| ExternalDocumentID | 11180334 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-debc272173b7082dd41f23d8affcf4d931b5b91868b4aa8ef9a090503978c40f3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 15 14:21:21 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-debc272173b7082dd41f23d8affcf4d931b5b91868b4aa8ef9a090503978c40f3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_11180334 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-29 |
| PublicationDateYYYYMMDD | 2025-06-29 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 IEEE Kiel PowerTech |
| PublicationTitleAbbrev | PowerTech |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9136052 |
| Snippet | Battery degradation significantly impacts the operational costs and profitability of hybrid power plants (HPPs) participating in the day-ahead (DA) market.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Analytical models Batteries battery degradation Computational modeling Costs cycle aging DA market Degradation Hybrid power plant Hybrid power systems Numerical models Power generation Profitability Radio frequency |
| Title | Comparative Analysis of Battery Degradation Models for Optimal Operation of a Hybrid Power Plant in the Day-Ahead Market |
| URI | https://ieeexplore.ieee.org/document/11180334 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2EGONJjRi_Mweuhd1tl22PBiRcRA4cuJF-JiS4GFiM_Hs7XdB48OCpzSZN05mkM9Od9x4hbaFFwnLTozzTGeWFkFSlWlGEcbLE5F5LHcUmivFYzGZysgerRyyMcy42n7kOTuO_fLsyW3wq66bIV8YYb5BGUfRqsNYJae95M7sT1BXDF2mkHMlD7ZflncOSX-IpMXYMz_656zlp_aDwYPIdXy7IkSsvyWf_h64bDowisPJQE2XuYIDsD7VQEqDQ2XIDIS-F13A1vKllGF3tc1yjYLRDxBbEMwEKGFWwKCEkhTBQO_oUbmoLLxEY3SLT4fO0P6J79QS6kKyi1mmThfKuYLoIhreWpz5jVijvjedWslTnWiJZvuZKCeelSiSSw4Sy0vDEsyvSLFelu8bupyLEMIPZiOFh0IljPuQ9NhGWeaNvSAutNn-v-THmB4Pd_vH9jpyib7DhKpP3pFmtt-6BHJuParFZP0avfgGZsqXY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0UjXpSI8Zve-Ba2N123fZoRIIRkAMHbqSfCQkuBhYj_95Od5F48OCpzSZN05mkM9Od9x5CDa54RFP9QFiiEsIyLoiMlSQA46SRTp0SKohNZIMBH4_FsAKrByyMtTY0n9kmTMO_fDPXK3gqa8XAV0Yp20V7IJ1VwbUOUKNizmwNQVkM3qSBdCT11V-SNjeLfsmnhOjROf7nvieovsXh4eFPhDlFOzY_Q19PW8JuvOEUwXOHS6rMNW4D_0MplYRB6my2xD4zxW_-cniXMz_a0uuwRuLuGjBbOJwJg4RRgac59mkhbss1efR3tcH9AI2uo1HnefTUJZV-ApkKWhBjlU58gZdRlXnTG8Nil1DDpXPaMSNorFIlgC5fMSm5dUJGAuhhfGGpWeToOarl89xeQP9T5qOYhnxEMz-oyFLnMx8TcUOdVpeoDlabfJQMGZONwa7--H6PDrujfm_Sexm8XqMj8BO0XyXiBtWKxcreon39WUyXi7vg4W9oFKkh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+Kiel+PowerTech&rft.atitle=Comparative+Analysis+of+Battery+Degradation+Models+for+Optimal+Operation+of+a+Hybrid+Power+Plant+in+the+Day-Ahead+Market&rft.au=Ghanaee%2C+Elahe&rft.au=Perez-Diaz%2C+Juan+Ignacio&rft.au=Fernandez-Munoz%2C+Daniel&rft.au=Najera%2C+Jorge&rft.date=2025-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FPowerTech59965.2025.11180334&rft.externalDocID=11180334 |