Leveraging Emotional Intelligence Metrics and NLP-Driven Sentiment Analysis for Predictive Workplace Mental Health Monitoring

Emotion recognition from user-generated text is vital for mental health monitoring, organizational well-being, and social media analytics. We propose a multi-label classification framework leveraging a fine-tuned BERT model to detect overlapping emotional states - joy, sadness, anger, and fear in so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 International Conference on Sensors and Related Networks (SENNET) Special Focus on Digital Healthcare(64220) S. 1 - 6
Hauptverfasser: Bhadauriya, Rajvardhan Singh, Shekhar, Kumar Animesh, Jain, Pratham, Vaid, Medha, R, Dhinesh Kumar, A, Rammohan
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 24.07.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Emotion recognition from user-generated text is vital for mental health monitoring, organizational well-being, and social media analytics. We propose a multi-label classification framework leveraging a fine-tuned BERT model to detect overlapping emotional states - joy, sadness, anger, and fear in social media posts. We curated and annotated a Reddit dataset spanning eight emotions and employed transfer learning to adapt a pre-trained BERT encoder. The system architecture, defined via UML diagrams, comprises modules for tokenization, classification, and an inference workflow exposed through a Flask API. Training and validation were conducted with the Hugging Face Transformers library on GPU-accelerated Google Colab, yielding an average F 1 -score of 82% across all labels. To demonstrate real-world applicability, we integrated the proposed model into a React-based interface that provides real-time emotion score visualizations. Load testing under concurrent users confirmed robust scalability and responsiveness. Case studies in healthcare screening, HR analytics, and digital well-being illustrate the proposed work potential to enhance emotion-aware services. By bridging emotional intelligence metrics and advanced sentiment analysis, the proposed framework establishes a scalable, interpretable foundation for emotion recognition in organizational contexts.
AbstractList Emotion recognition from user-generated text is vital for mental health monitoring, organizational well-being, and social media analytics. We propose a multi-label classification framework leveraging a fine-tuned BERT model to detect overlapping emotional states - joy, sadness, anger, and fear in social media posts. We curated and annotated a Reddit dataset spanning eight emotions and employed transfer learning to adapt a pre-trained BERT encoder. The system architecture, defined via UML diagrams, comprises modules for tokenization, classification, and an inference workflow exposed through a Flask API. Training and validation were conducted with the Hugging Face Transformers library on GPU-accelerated Google Colab, yielding an average F 1 -score of 82% across all labels. To demonstrate real-world applicability, we integrated the proposed model into a React-based interface that provides real-time emotion score visualizations. Load testing under concurrent users confirmed robust scalability and responsiveness. Case studies in healthcare screening, HR analytics, and digital well-being illustrate the proposed work potential to enhance emotion-aware services. By bridging emotional intelligence metrics and advanced sentiment analysis, the proposed framework establishes a scalable, interpretable foundation for emotion recognition in organizational contexts.
Author R, Dhinesh Kumar
Jain, Pratham
Vaid, Medha
Shekhar, Kumar Animesh
Bhadauriya, Rajvardhan Singh
A, Rammohan
Author_xml – sequence: 1
  givenname: Rajvardhan Singh
  surname: Bhadauriya
  fullname: Bhadauriya, Rajvardhan Singh
  email: Rajvardhan.108005@stu.upes.ac.in
  organization: University of Petroleum and Energy Studies,School of Computer Science,Dehradun,India
– sequence: 2
  givenname: Kumar Animesh
  surname: Shekhar
  fullname: Shekhar, Kumar Animesh
  email: kumar.107110@stu.upes.ac.in
  organization: University of Petroleum and Energy Studies,School of Computer Science,Dehradun,India
– sequence: 3
  givenname: Pratham
  surname: Jain
  fullname: Jain, Pratham
  email: pratham.107064@stu.upes.ac.in
  organization: University of Petroleum and Energy Studies,School of Computer Science,Dehradun,India
– sequence: 4
  givenname: Medha
  surname: Vaid
  fullname: Vaid, Medha
  email: Medha.107848@stu.upes.ac.in
  organization: University of Petroleum and Energy Studies,School of Computer Science,Dehradun,India
– sequence: 5
  givenname: Dhinesh Kumar
  surname: R
  fullname: R, Dhinesh Kumar
  email: dhineshk.ravi@ddn.upes.ac.in
  organization: University of Petroleum and Energy Studies,School of Computer Science,Dehradun,India
– sequence: 6
  givenname: Rammohan
  surname: A
  fullname: A, Rammohan
  email: rammohan.a@vit.ac.in
  organization: Vellore Institute of Technology,Automotive Research Centre,Vellore,India
BookMark eNo1kMtqwzAURFVoF22aP-hC_QCnkiU_tAyp2wQcNxBDl0GWrlxRRwqyCGTRf6_pYzMDl5lzYe7QtfMOEHqkZEEpEU_7qmmqNudpShYpSbPpSlkmcnKF5qIQJWM0EwXPi1v0VcMZguyt63F19NF6Jwe8cRGGwfbgFOAtxGDViKXTuKl3yXOwZ3B4Dy7a4yR4OVUuox2x8QHvAmir4hTB7z58ngb5g3Bxwq5BDvEDb72z0Yfp5T26MXIYYf7nM9S-VO1qndRvr5vVsk6sYDHROk8JFapTjBtSUirByLJQmdGKFZkuqTS5kpRxobXRvKCgMtVxkLniHRFshh5-sRYADqdgjzJcDv-jsG9heGBy
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SENNET64220.2025.11135960
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331597467
EndPage 6
ExternalDocumentID 11135960
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-dd62019cbc34f0811aefa87c5fdc375d81af6ca1349ddfd471ec5cb4ea6c4b093
IEDL.DBID RIE
IngestDate Wed Sep 17 06:32:46 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-dd62019cbc34f0811aefa87c5fdc375d81af6ca1349ddfd471ec5cb4ea6c4b093
PageCount 6
ParticipantIDs ieee_primary_11135960
PublicationCentury 2000
PublicationDate 2025-July-24
PublicationDateYYYYMMDD 2025-07-24
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-July-24
  day: 24
PublicationDecade 2020
PublicationTitle 2025 International Conference on Sensors and Related Networks (SENNET) Special Focus on Digital Healthcare(64220)
PublicationTitleAbbrev SENNET
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9156729
Snippet Emotion recognition from user-generated text is vital for mental health monitoring, organizational well-being, and social media analytics. We propose a...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms BERT
Bidirectional control
Emotion Classification
Emotion recognition
Encoding
Measurement
Mental health
Monitoring
Multi-label Learning
Real-time systems
Sentiment analysis
Social networking (online)
UML
Unified modeling language
Title Leveraging Emotional Intelligence Metrics and NLP-Driven Sentiment Analysis for Predictive Workplace Mental Health Monitoring
URI https://ieeexplore.ieee.org/document/11135960
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46RHxSceKdCL5ma5s2aZ-1Q2GWwQbubeRyAgPpZBff_O_mpKuXBx98K6X0QNLmyzk53_cRcgfaY7CRnGWFsD5B4YoVTnOmYgPWxVpEKg1mE7Kq8um0GG3J6oELAwCh-Qx6eBnO8u3CbLBU1kdbdP9On6HvSikastY-ud3qZvbHZVWVE7-hTiKf-CVZr33-l3NKAI7B4T9DHpHuNwWPjr7A5ZjsQH1CPobgv7zgK0TLxn9HvdKnH6qa9BkdssyKqtrSajhiD0tczugYm4IwFG1VSKjfrfoIeE6DKx59aRu0aCPrQxuCEm1-eqz-dclkUE7uH9nWP4HNC75m1gqP7oXRhqfOI3-swKlcmsxZw2Vm81g5YRTqE1rrrEcpMJnRKShhUh0V_JR06kUNZ4TGKgqUU4dJrNBcS1BgRK5iHaU2ic5JF4du9tYoZMzaUbv44_4lOcAJwhppkl6Rznq5gWuyZ97X89XyJszrJw7zqPg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kinpSseLbFbymTbJ5njWlxTQUGrC3so9ZKEgqfXjzv7uzSXwcPHgLgWRgN9lvZ3a-7yPkAYTBYBkzJ0wjZRIUxp1UC-ZwT4LSnohcHlizibgoktksnTRkdcuFAQDbfAY9vLRn-Wopt1gq66MtunmnydB30TqroWvtk_tGObM_zYoiK82W2ndN6ueHvfaJX94pFjoGR_8Meky63yQ8OvmClxOyA9Up-cjBfHvWWYhmtQMPf6WjH7qadIweWXJNeaVokU-cpxUuaHSKbUEYirY6JNTsV00EPKnBNY--tC1atBb2oTVFida_Pdb_uqQcZOXj0GkcFJxFyjaOUpHB91QKyQJtsN_joHkSy1AryeJQJR7XkeSoUKiUVganQIZSBMAjGQg3ZWekUy0rOCfU464lnWpMYyPBRAwcZJRwT7iB8t0L0sWhm7_VGhnzdtQu_7h_Rw6G5Tif56Pi-Yoc4mRhxdQPrklns9rCDdmT75vFenVr5_gTBTusQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Conference+on+Sensors+and+Related+Networks+%28SENNET%29+Special+Focus+on+Digital+Healthcare%2864220%29&rft.atitle=Leveraging+Emotional+Intelligence+Metrics+and+NLP-Driven+Sentiment+Analysis+for+Predictive+Workplace+Mental+Health+Monitoring&rft.au=Bhadauriya%2C+Rajvardhan+Singh&rft.au=Shekhar%2C+Kumar+Animesh&rft.au=Jain%2C+Pratham&rft.au=Vaid%2C+Medha&rft.date=2025-07-24&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSENNET64220.2025.11135960&rft.externalDocID=11135960