Intelligent Multi-Sensor Data Fusion for Enhanced RADAR and Optical Imaging Applications Using Huffman Encoding

The growing demand for real-time object detection and tracking in autonomous systems, military surveillance, and wearable safety applications has highlighted significant challenges in sensor fusion, computational efficiency, and environmental adaptability. This paper presents a novel multi-sensor fu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 IEEE Space, Aerospace and Defence Conference (SPACE) s. 1 - 6
Hlavní autoři: Devarajan, Anjali, Jain, Ashrith P, Goswami, Ashutosh, Vats, Ayush, V, Kiran
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 21.07.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The growing demand for real-time object detection and tracking in autonomous systems, military surveillance, and wearable safety applications has highlighted significant challenges in sensor fusion, computational efficiency, and environmental adaptability. This paper presents a novel multi-sensor fusion framework that integrates Frequency Modulated Continuous Wave (FMCW) radar, a YOLO-powered camera module, and GPS to enhance detection accuracy and robustness under diverse conditions. A key challenge in real-time vision-based systems is the computational overhead of high-resolution image processing, which limits deployment in resource-constrained embedded platforms. To address this, Huffman encoding is applied to the camera feed, reducing memory consumption and processing latency while preserving critical object features. Experimental results demonstrate that the proposed system achieves a 28.9% reduction in inference time and a 26% reduction in model size with minimal accuracy loss (0.6% mAP drop). By optimizing data fusion and compression techniques, this work provides a scalable and energy-efficient solution for modern Advanced Driver Assistance Systems (ADAS), battlefield situational awareness, and intelligent security monitoring, addressing key limitations in existing autonomous perception technologies.
AbstractList The growing demand for real-time object detection and tracking in autonomous systems, military surveillance, and wearable safety applications has highlighted significant challenges in sensor fusion, computational efficiency, and environmental adaptability. This paper presents a novel multi-sensor fusion framework that integrates Frequency Modulated Continuous Wave (FMCW) radar, a YOLO-powered camera module, and GPS to enhance detection accuracy and robustness under diverse conditions. A key challenge in real-time vision-based systems is the computational overhead of high-resolution image processing, which limits deployment in resource-constrained embedded platforms. To address this, Huffman encoding is applied to the camera feed, reducing memory consumption and processing latency while preserving critical object features. Experimental results demonstrate that the proposed system achieves a 28.9% reduction in inference time and a 26% reduction in model size with minimal accuracy loss (0.6% mAP drop). By optimizing data fusion and compression techniques, this work provides a scalable and energy-efficient solution for modern Advanced Driver Assistance Systems (ADAS), battlefield situational awareness, and intelligent security monitoring, addressing key limitations in existing autonomous perception technologies.
Author Devarajan, Anjali
Jain, Ashrith P
V, Kiran
Goswami, Ashutosh
Vats, Ayush
Author_xml – sequence: 1
  givenname: Anjali
  surname: Devarajan
  fullname: Devarajan, Anjali
  email: anjalid.ec21@rvce.edu.in
  organization: R.V College of Engineering,Dept. of ECE,Bangalore,India
– sequence: 2
  givenname: Ashrith P
  surname: Jain
  fullname: Jain, Ashrith P
  email: ashrithpjain.ec21@rvce.edu.in
  organization: R.V College of Engineering,Dept. of ECE,Bangalore,India
– sequence: 3
  givenname: Ashutosh
  surname: Goswami
  fullname: Goswami, Ashutosh
  email: ashutoshg.ec21@rvce.edu.in
  organization: R.V College of Engineering,Dept. of ECE,Bangalore,India
– sequence: 4
  givenname: Ayush
  surname: Vats
  fullname: Vats, Ayush
  email: ayushvats.ec21@rvce.edu.in
  organization: R.V College of Engineering,Dept. of ECE,Bangalore,India
– sequence: 5
  givenname: Kiran
  surname: V
  fullname: V, Kiran
  email: kiranv@rvce.edu.in
  organization: R.V College of Engineering,Dept. of ECE,Bangalore,India
BookMark eNo1kM9Og0AYxNdED1r7Bh72Baj7hwX2SCi1JDU1bT03H7sfuAldCGwPvr006mkyv2QmmXki9773SAjlbMU506_Hj7woE5VlYiWYUDPkKUt4dkeWOtWZlFxxpYR4JH3lA3ada9EH-n7tgouO6Kd-pGsIQDfXyfWeNrMv_Rd4g5Ye8nV-oOAt3Q_BGehodYHW-Zbmw9DNIMyRiX5ON7S9Ns0F_Jw2vZ3BM3looJtw-acLctqUp2Ib7fZvVZHvIqdliCwI4Flca8WTWNXGpultgRFKpHUTG0CTIENttY4lSy2zgDGDWCdMYgJcLsjLb61DxPMwuguM3-f_G-QP5TlYQg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SPACE65882.2025.11170618
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331515522
EndPage 6
ExternalDocumentID 11170618
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-da2a184b951645bcd771170c2527bf4caec6e0e9d994307d0dae40a49603e6a13
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:01 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-da2a184b951645bcd771170c2527bf4caec6e0e9d994307d0dae40a49603e6a13
PageCount 6
ParticipantIDs ieee_primary_11170618
PublicationCentury 2000
PublicationDate 2025-July-21
PublicationDateYYYYMMDD 2025-07-21
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-July-21
  day: 21
PublicationDecade 2020
PublicationTitle 2025 IEEE Space, Aerospace and Defence Conference (SPACE)
PublicationTitleAbbrev SPACE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9159846
Snippet The growing demand for real-time object detection and tracking in autonomous systems, military surveillance, and wearable safety applications has highlighted...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
adaptive cruise control
autonomous navigation
Cameras
data fusion algorithms
Data integration
FMCW radar
Global Positioning System
GPS tracking
Huffman encoding
Image coding
lossless image compression
military surveillance
Multi-sensor fusion
Radar imaging
Radar tracking
real-time object detection
Real-time systems
Sensor fusion
Surveillance
YOLO
Title Intelligent Multi-Sensor Data Fusion for Enhanced RADAR and Optical Imaging Applications Using Huffman Encoding
URI https://ieeexplore.ieee.org/document/11170618
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwELYK6tCprUrVtzx0DcSOE8djxEOwUAQMbOjih8pAgmjS31_bAdoOHbpFViJbZyl339199yH0SiEXMUtMwBIVBSy1_0HrhFWgZK6IEUCoacQm-HSarlZidiCrey6M1to3n-mue_S1fFXK2qXKesTJpCQkbaEW57whax27c0LRW8yy_tB61NQRrGjcPb7-SzjF-43R5T93vEKdbwYenp18yzU608UNKien-ZkV9szZYGFRaLnHA6gAj2qX-cI2CsXD4t1X9vE8G2RzDIXCbzuftcaTrdclwtmPyjX2jQN4XBuzhcJ-LUu3bQctR8NlfxwcBBOCjYiqQAEFC9is8S0GinOpOHfHlzSmPDdMgpaJDrVQws1c5ypUoFkIzIKYSCdAolvULspC3yHMDBgWU2Ojw5zZiAUs0EpCoSJIuE5JeI86zljrXTMSY32008Mf64_owl2JS4pS8oTa1b7Wz-hcflabj_2Lv8gvQIWgTQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIMEEiCLeeGBNGzvOw2PUh1pRStV26FZd_BAdmlQl4fdjuw9gYGCzLFmOzlLuvrv77kPomULGQxZpj0Uy8Fhi_oPGCUtPikwSzYFQvRGbiIfDZDbjoy1Z3XFhlFKu-Uw17NLV8mUhKpsqaxIrkxKR5BAdhYxRsqFr7fpzfN6cjNJWx_jUxFKsaNjYHfglneI8R_fsn3eeo_o3Bw-P9t7lAh2o_BIV_f0EzRI77qw3MTi0WOM2lIC7lc19YROH4k7-7mr7eJy20zGGXOK3lctb4_7SKRPh9EftGrvWAdyrtF5Cbk6Lwl5bR9NuZ9rqeVvJBG_Bg9KTQMFANmN-g4LCTMg4tp8vaEjjTDMBSkTKV1xyO3U9lr4ExXxgBsYEKgISXKFaXuTqGmGmQbOQahMfZszELGCgVuRzGUAUq4T4N6hujTVfbYZizHd2uv1j_wmd9Kavg_mgP3y5Q6f2eWyKlJJ7VCvXlXpAx-KzXHysH92jfgHE-KOU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+Space%2C+Aerospace+and+Defence+Conference+%28SPACE%29&rft.atitle=Intelligent+Multi-Sensor+Data+Fusion+for+Enhanced+RADAR+and+Optical+Imaging+Applications+Using+Huffman+Encoding&rft.au=Devarajan%2C+Anjali&rft.au=Jain%2C+Ashrith+P&rft.au=Goswami%2C+Ashutosh&rft.au=Vats%2C+Ayush&rft.date=2025-07-21&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSPACE65882.2025.11170618&rft.externalDocID=11170618