Towards Intelligent Resource Allocation in Highly-Distributed Content Delivery Networks Using Graph Neural Networks
We introduce GNN4Alloc, a learning-based frame-work for resource allocation in highly distributed Content De-livery Networks (CDNs). Focusing on the core challenges of content placement and routing, GNN4Alloc leverages Graph Neural Networks (GNNs) to enhance decision-making efficiency in dynamic and...
Uloženo v:
| Vydáno v: | 2025 9th Network Traffic Measurement and Analysis Conference (TMA) s. 1 - 4 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IFIP
10.06.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We introduce GNN4Alloc, a learning-based frame-work for resource allocation in highly distributed Content De-livery Networks (CDNs). Focusing on the core challenges of content placement and routing, GNN4Alloc leverages Graph Neural Networks (GNNs) to enhance decision-making efficiency in dynamic and large-scale environments. Building on prior work that employs mathematical optimization and heuristic algorithms, we reformulate these problems using graph representation learning, leveraging the bipartite nature of content-to-node assignment and routing decisions in CDN resource allocation. The framework incorporates GNN-based modules - including neural algorithm executors and constrained optimization layers - to develop adaptive allocation policies that generalize across diverse network topologies and demand profiles. By doing so, GNN4Alloc aims to improve both the scalability and solution quality of content allocation strategies, contributing to the broader goal of advancing GNN-based control in distributed systems. |
|---|---|
| AbstractList | We introduce GNN4Alloc, a learning-based frame-work for resource allocation in highly distributed Content De-livery Networks (CDNs). Focusing on the core challenges of content placement and routing, GNN4Alloc leverages Graph Neural Networks (GNNs) to enhance decision-making efficiency in dynamic and large-scale environments. Building on prior work that employs mathematical optimization and heuristic algorithms, we reformulate these problems using graph representation learning, leveraging the bipartite nature of content-to-node assignment and routing decisions in CDN resource allocation. The framework incorporates GNN-based modules - including neural algorithm executors and constrained optimization layers - to develop adaptive allocation policies that generalize across diverse network topologies and demand profiles. By doing so, GNN4Alloc aims to improve both the scalability and solution quality of content allocation strategies, contributing to the broader goal of advancing GNN-based control in distributed systems. |
| Author | Vanerio, Juan Casas, Pedro Schmid, Stefan |
| Author_xml | – sequence: 1 givenname: Juan surname: Vanerio fullname: Vanerio, Juan organization: University of Vienna – sequence: 2 givenname: Pedro surname: Casas fullname: Casas, Pedro organization: AIT Austrian Institute of Technology – sequence: 3 givenname: Stefan surname: Schmid fullname: Schmid, Stefan organization: University of Vienna |
| BookMark | eNo9kMtKAzEYhSPoQmvfQDAvMDWXmVyWpdW2UBVkXJdM5k8bjJOSpJa-vQUvqwPf4TuLc4MuhzgAQveUTBjXVD-0z1MhaiYnjLBmQinRklB9gcZaKq4Jp1LIur5GuY1Hk_qMV0OBEPwWhoLfIMdDsoCnIURrio8D9gNe-u0unKq5zyX57lCgx7N41s7GHIL_gnTCL1COMX1k_J79sMWLZPa7MzwkE_67W3TlTMgw_s0Rap8e29myWr8uVrPpuvKal6pXVjnbGdZ3jDLhlJGOGkGYrK3hTDnZAFWCE8kdVV0DxtZKKmGgYc5ayUfo7mfWA8Bmn_ynSafN3xX8G6wSW7U |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/TMA66427.2025.11097019 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9783903176744 3903176745 |
| EndPage | 4 |
| ExternalDocumentID | 11097019 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-d8c8fcba2db2126f8a7f1a60274ca328f75e1863073f18b5eac48786ae52fcc73 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 06 17:55:18 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-d8c8fcba2db2126f8a7f1a60274ca328f75e1863073f18b5eac48786ae52fcc73 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_11097019 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-10 |
| PublicationDateYYYYMMDD | 2025-06-10 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 9th Network Traffic Measurement and Analysis Conference (TMA) |
| PublicationTitleAbbrev | TMA |
| PublicationYear | 2025 |
| Publisher | IFIP |
| Publisher_xml | – name: IFIP |
| Score | 1.9112384 |
| Snippet | We introduce GNN4Alloc, a learning-based frame-work for resource allocation in highly distributed Content De-livery Networks (CDNs). Focusing on the core... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Focusing Graph neural networks Heuristic algorithms Network topology Optimization Representation learning Resource management Routing Scalability Telecommunication traffic |
| Title | Towards Intelligent Resource Allocation in Highly-Distributed Content Delivery Networks Using Graph Neural Networks |
| URI | https://ieeexplore.ieee.org/document/11097019 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmACRBFveWB1W9v1I2NFKTBQdcjQrXL8kCpFKWpSpP57fE5bxMDAElmJLUt3su-R775D6MkJ7Ye6EEQKykl0qR0xbOAIj8_CmSFlzKZmE2o61fN5NtsVq6daGO99Ap_5HgzTv3y3shtIlfWBHRPow4_RsVKyLdZqMVuMZzTr5x8jGf1pFcM-Jnr72b_6piSzMTn754bnqPtTgIdnB9NygY58dYnqPEFca_x-oNFs8D79jkclmCUQM15WGOAb5ZaMgRYXOlp5hxMPVVwx9iVgMbZ42iLAa5xgA_gVqKsxkHWY8vCti_LJS_78RnY9E8gy4w1x2upgC8NcEW2SDNqoQI2E2NMaznRQwlMt4WAHGlUUr90YsWhpvGDBWsWvUKdaVf4aYQfJQcqNyTI7ZD46DkFQM-DWWx79BHODuiCwxWfLirHYy-r2j_d36BTUAjArOrhHnWa98Q_oxH41y3r9mHT5DTUTo7Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagIMEEiCJuPLC6re06ccYKKK1oow4ZulWOD6lSlKImReq_x889EAMDSxTlUKT3ZL8j3_s-hJ6NkLYrc0EiQTnxKbUhinUM4f6YG9WljOkgNhGnqZxOk8l2WD3MwlhrA_jMtuA0_Ms3C72CVlkb2DGBPvwQHYF01nZca4PaYjyhSTsb9yKfUce-8GOitXv-l3JKCBz9s39-8hw1f0bw8GQfXC7QgS0vUZUFkGuFh3sizRrvGvC4V0BgAkPjeYkBwFGsySsQ44KmlTU4MFH5N15tAWiMNU43GPAKB-AAfgfyagx0HarY32uirP-WvQzIVjWBzBNeEyO1dDpXzOQ-KkVOqthRFUH1qRVn0sXCUhnB0nbUO8lvvL5mkZGygjmtY36FGuWitNcIG2gPUq5Ukugusz51cIKqDtdWc58pqBvUBIPNPje8GLOdrW7_uP6ETgbZeDQbDdOPO3QKLgLQFe3co0a9XNkHdKy_6nm1fAx-_QbmzKb9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+9th+Network+Traffic+Measurement+and+Analysis+Conference+%28TMA%29&rft.atitle=Towards+Intelligent+Resource+Allocation+in+Highly-Distributed+Content+Delivery+Networks+Using+Graph+Neural+Networks&rft.au=Vanerio%2C+Juan&rft.au=Casas%2C+Pedro&rft.au=Schmid%2C+Stefan&rft.date=2025-06-10&rft.pub=IFIP&rft.spage=1&rft.epage=4&rft_id=info:doi/10.23919%2FTMA66427.2025.11097019&rft.externalDocID=11097019 |