Hybrid Approach for Airspace Sectorization Based on K-Means Clustering and Genetic Algorithm Optimization

This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm minimizes the operating costs related to airspace complexities, unbalanced workloads, and inter-sector coordination requirements while respectin...

Full description

Saved in:
Bibliographic Details
Published in:2024 International Conference of the African Federation of Operational Research Societies (AFROS) pp. 1 - 5
Main Authors: Addala, Manel, Mogtit, Abdessamed, Lagha, Mohand
Format: Conference Proceeding
Language:English
Published: IEEE 03.11.2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm minimizes the operating costs related to airspace complexities, unbalanced workloads, and inter-sector coordination requirements while respecting geometric constraints such as minimum distance, convexity, and connectivity. The algorithm initiates sectorization solutions using K-means clustering and then iteratively refines them using GA operations. A comparative analysis was conducted on ten tests, assigning various weights to cost components. The hybrid approach was tested using air traffic data over a one-hour period. The study evaluated the optimal, worst, and average fitness scores by adjusting the weights' importance orders and comparing the results to the current state-of-the-art method. The results demonstrate that GA with a smaller weighting yields optimum operating costs, highlighting the efficiency of the hybrid approach in resolving the airspace sectorization problem while adhering to geometric constraints.
AbstractList This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm minimizes the operating costs related to airspace complexities, unbalanced workloads, and inter-sector coordination requirements while respecting geometric constraints such as minimum distance, convexity, and connectivity. The algorithm initiates sectorization solutions using K-means clustering and then iteratively refines them using GA operations. A comparative analysis was conducted on ten tests, assigning various weights to cost components. The hybrid approach was tested using air traffic data over a one-hour period. The study evaluated the optimal, worst, and average fitness scores by adjusting the weights' importance orders and comparing the results to the current state-of-the-art method. The results demonstrate that GA with a smaller weighting yields optimum operating costs, highlighting the efficiency of the hybrid approach in resolving the airspace sectorization problem while adhering to geometric constraints.
Author Lagha, Mohand
Addala, Manel
Mogtit, Abdessamed
Author_xml – sequence: 1
  givenname: Manel
  surname: Addala
  fullname: Addala, Manel
  email: addala_manel@univ-blida.dz
  organization: Aeronautical and Spatial Studies Institute,Aeronautical Sciences Laboratory,Blida,Algeria
– sequence: 2
  givenname: Abdessamed
  surname: Mogtit
  fullname: Mogtit, Abdessamed
  email: Mogtit.Abdessamed@etu.univblida.dz
  organization: Aeronautical and Spatial Studies Institute,Aeronautical Sciences Laboratory,Blida,Algeria
– sequence: 3
  givenname: Mohand
  surname: Lagha
  fullname: Lagha, Mohand
  email: laghamohand@univ-blida.dz
  organization: Aeronautical and Spatial Studies Institute,Aeronautical Sciences Laboratory,Blida,Algeria
BookMark eNo1kE1OwzAUhI0ECyi9AQtfIMV_ceJliGiLKIpEu6-ek5fWUuJEjlmU0xNEWYxmNNI3i3kgt37wSAjlbMU5M8_F-rPaa8F5uhJMqN9SasPMDVmazOQyZTLXSuX3xG0vNriGFuMYBqjPtB0CLVyYRqiR7rGOQ3DfEN3g6QtM2NA5vCcfCH6iZfc1RQzOnyj4hm7QY3Q1LbrTDMVzT6sxuv6KP5K7FroJl1dfkMP69VBuk121eSuLXeKMjEmToUmRiVkZGJEzYFyDsVqnRnEUCoSqjdEoWsa5lioXFnLbaBDMWqbkgjz9zTpEPI7B9RAux_8D5A_6ilZM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AFROS62115.2024.11036909
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350386448
EndPage 5
ExternalDocumentID 11036909
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-d7e95e025e07a9280a016a9b665941e24a24c996e2f01163482ba8bd6a20bb043
IEDL.DBID RIE
IngestDate Wed Jul 02 05:55:42 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-d7e95e025e07a9280a016a9b665941e24a24c996e2f01163482ba8bd6a20bb043
PageCount 5
ParticipantIDs ieee_primary_11036909
PublicationCentury 2000
PublicationDate 2024-Nov.-3
PublicationDateYYYYMMDD 2024-11-03
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov.-3
  day: 03
PublicationDecade 2020
PublicationTitle 2024 International Conference of the African Federation of Operational Research Societies (AFROS)
PublicationTitleAbbrev AFROS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.88818
Snippet This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms airspace sectorization
balanced workload
Clustering algorithms
Complexity theory
Costs
genetic algorithm
Genetic algorithms
Genetics
kmeans clustering algorithm
Optimization
Reliability
Reproducibility of results
Shape
Stability analysis
Title Hybrid Approach for Airspace Sectorization Based on K-Means Clustering and Genetic Algorithm Optimization
URI https://ieeexplore.ieee.org/document/11036909
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG2EePCkRoy_04PXwui6dT1OIiFRgQgx3Ei7fugSGASHif-9X8vQePDgrWnaNenX7H2v7Xsl5DbSGVdxG5mqSYA5Ry-muI0Z54FCQiIFeCPtl0fZ7yeTiRpWYnWvhQEAf_kMmq7oz_LtMtu4rbIWQlWIbE7VSE1KuRVr7W7nBKqVdp8HoxgZTYS8j4vmrvmvh1M8bnQP_zniEWn8KPDo8BtbjskeFCck7306fRVNKx9wigknTXNkphqbj_z-eyWrpHeITpZi4YE9AcIR7cw3zhMBv0Z1Yamzm8Y1Q9P5K3Yq3xZ0gD-PRdW9Qcbd-3Gnx6qnEliuwpJZCSoCTF8gkFrxJNCYyWll4jhSog1caC4yZDbAZ-7gxRnaGJ0YG2seGBOI8JTUi2UBZ4QqMDOr24nE2IpIxUZzE2KONdNamyjj56Thpmm62pphTHczdPFH_SU5cMHw8r3witTL9QauyX72Uebv6xsfwi-qMZ6Y
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46BT2pOPG3OXjt1qZp2hzrcEz2Ezdkt5G0b66wdTI7wf_el6xTPHjwFkJfCnml3_uSfF8IuQ9UwqTwkKnqCBzj6OVIlgqHMVciIQk5WCPtl07Y60XjsRyUYnWrhQEAe_gMaqZp9_LTZbI2S2V1hCof2ZzcJXsB58zbyLW253NcWY-bz_2hQE4TIPNjvLYN-HV1ikWO5tE_33lMqj8aPDr4RpcTsgP5Kclan0ZhRePSCZxiyUnjDLmpwseHdgW-FFbSB8SnlGKj7XQBAYk25mvjioCjUZWn1BhO41dD4_krBhWzBe3j72NRhlfJqPk4arSc8rIEJ5N-4aQhyACwgAE3VJJFrsJaTkktRCC5B4wrxhPkNsCmZuvFWNpoFelUKOZq7XL_jFTyZQ7nhErQ01R5UYjZ5YEUWjHtY5U1VUrpIGEXpGqmafK2scOYbGfo8o_-O3LQGnU7k85Tr31FDk1irJjPvyaVYrWGG7KffBTZ--rWpvMLFiWh3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+of+the+African+Federation+of+Operational+Research+Societies+%28AFROS%29&rft.atitle=Hybrid+Approach+for+Airspace+Sectorization+Based+on+K-Means+Clustering+and+Genetic+Algorithm+Optimization&rft.au=Addala%2C+Manel&rft.au=Mogtit%2C+Abdessamed&rft.au=Lagha%2C+Mohand&rft.date=2024-11-03&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FAFROS62115.2024.11036909&rft.externalDocID=11036909