Hybrid Approach for Airspace Sectorization Based on K-Means Clustering and Genetic Algorithm Optimization
This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm minimizes the operating costs related to airspace complexities, unbalanced workloads, and inter-sector coordination requirements while respectin...
Gespeichert in:
| Veröffentlicht in: | 2024 International Conference of the African Federation of Operational Research Societies (AFROS) S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
03.11.2024
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm minimizes the operating costs related to airspace complexities, unbalanced workloads, and inter-sector coordination requirements while respecting geometric constraints such as minimum distance, convexity, and connectivity. The algorithm initiates sectorization solutions using K-means clustering and then iteratively refines them using GA operations. A comparative analysis was conducted on ten tests, assigning various weights to cost components. The hybrid approach was tested using air traffic data over a one-hour period. The study evaluated the optimal, worst, and average fitness scores by adjusting the weights' importance orders and comparing the results to the current state-of-the-art method. The results demonstrate that GA with a smaller weighting yields optimum operating costs, highlighting the efficiency of the hybrid approach in resolving the airspace sectorization problem while adhering to geometric constraints. |
|---|---|
| AbstractList | This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm minimizes the operating costs related to airspace complexities, unbalanced workloads, and inter-sector coordination requirements while respecting geometric constraints such as minimum distance, convexity, and connectivity. The algorithm initiates sectorization solutions using K-means clustering and then iteratively refines them using GA operations. A comparative analysis was conducted on ten tests, assigning various weights to cost components. The hybrid approach was tested using air traffic data over a one-hour period. The study evaluated the optimal, worst, and average fitness scores by adjusting the weights' importance orders and comparing the results to the current state-of-the-art method. The results demonstrate that GA with a smaller weighting yields optimum operating costs, highlighting the efficiency of the hybrid approach in resolving the airspace sectorization problem while adhering to geometric constraints. |
| Author | Lagha, Mohand Addala, Manel Mogtit, Abdessamed |
| Author_xml | – sequence: 1 givenname: Manel surname: Addala fullname: Addala, Manel email: addala_manel@univ-blida.dz organization: Aeronautical and Spatial Studies Institute,Aeronautical Sciences Laboratory,Blida,Algeria – sequence: 2 givenname: Abdessamed surname: Mogtit fullname: Mogtit, Abdessamed email: Mogtit.Abdessamed@etu.univblida.dz organization: Aeronautical and Spatial Studies Institute,Aeronautical Sciences Laboratory,Blida,Algeria – sequence: 3 givenname: Mohand surname: Lagha fullname: Lagha, Mohand email: laghamohand@univ-blida.dz organization: Aeronautical and Spatial Studies Institute,Aeronautical Sciences Laboratory,Blida,Algeria |
| BookMark | eNo1kE1OwzAUhI0ECyi9AQtfIMV_ceJliGiLKIpEu6-ek5fWUuJEjlmU0xNEWYxmNNI3i3kgt37wSAjlbMU5M8_F-rPaa8F5uhJMqN9SasPMDVmazOQyZTLXSuX3xG0vNriGFuMYBqjPtB0CLVyYRqiR7rGOQ3DfEN3g6QtM2NA5vCcfCH6iZfc1RQzOnyj4hm7QY3Q1LbrTDMVzT6sxuv6KP5K7FroJl1dfkMP69VBuk121eSuLXeKMjEmToUmRiVkZGJEzYFyDsVqnRnEUCoSqjdEoWsa5lioXFnLbaBDMWqbkgjz9zTpEPI7B9RAux_8D5A_6ilZM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/AFROS62115.2024.11036909 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350386448 |
| EndPage | 5 |
| ExternalDocumentID | 11036909 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-d7e95e025e07a9280a016a9b665941e24a24c996e2f01163482ba8bd6a20bb043 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jul 02 05:55:42 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-d7e95e025e07a9280a016a9b665941e24a24c996e2f01163482ba8bd6a20bb043 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_11036909 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Nov.-3 |
| PublicationDateYYYYMMDD | 2024-11-03 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-3 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 International Conference of the African Federation of Operational Research Societies (AFROS) |
| PublicationTitleAbbrev | AFROS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.88818 |
| Snippet | This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | airspace sectorization balanced workload Clustering algorithms Complexity theory Costs genetic algorithm Genetic algorithms Genetics kmeans clustering algorithm Optimization Reliability Reproducibility of results Shape Stability analysis |
| Title | Hybrid Approach for Airspace Sectorization Based on K-Means Clustering and Genetic Algorithm Optimization |
| URI | https://ieeexplore.ieee.org/document/11036909 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2EePCkRozf6cFrYel22-1xJRITIxDhwI2020E3gcXgYuK_d1oWjQcP3ppmpk063Z2Ztu8NIbeQOIFhqmSJnmsmci2YSTCQw-TZ4LfXtUJvi02owSCdTvWoBqsHLAwAhMdn0PbNcJfvVvnGH5V10FXFmM3pBmkopbZgrd3rnEh3sv7zcIzjdxPM-7ho78R_FU4JfqN_-M8Zj0jrB4FHR9--5ZjsQXlCiodPj6-iWc0DTjHgpFmBmalB8XE4f69hlfQOvZOj2HhkT4DuiPYWG8-JgKNRUzrq6aZxz9Bs8YJK1euSDvHnsazVW2TSv5_0HlhdKoEVOq6YU6ATwPAFImU0TyODkZzRVspEiy5wYTiaQUvgc3_x4gltrEmtk4ZH1kYiPiXNclXCGaGxRAGZKy8Y2M9Q0zhQaR5bx7k6Jy2_TLO3LRnGbLdCF3_0X5IDb4wA34uvSLNab-Ca7OcfVfG-vgkm_AKN1Z1c |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIMEEiCLeeGBNmzjOw2OoqIr6FO3QrbLjK0RqU1QSJP49ZzcFMTCwWdadLfmc3J3t7ztC7iHQHMPU0AnEXDg8FdyRAQZymDxL_PY8xcWm2EQ0GMTTqRhVYHWLhQEA-_gMGqZp7_L1Ki3NUVkTXZWP2ZzYJXsB58zbwLW273Nc0Uzaz8MxzuAFmPkx3tgq_CqdYj1H--ifcx6T-g8Gj46-vcsJ2YH8lGSdT4OwoknFBE4x5KRJhrmpRPGxPYGvgJX0Af2TptjoOn1Ah0Rbi9KwIuBoVOaaGsJp3DU0WbygUvG6pEP8fSwr9TqZtB8nrY5TFUtwMuEXjo5ABIABDLiRFCx2JcZyUqgwDAT3gHHJ0BAiBDY3Vy-G0kbJWOlQMlcpl_tnpJavcjgn1A9RIEwjI2j5z1BTaoji1FeaseiC1M0yzd42dBiz7Qpd_tF_Rw46k35v1nsadK_IoTGMBfP516RWrEu4IfvpR5G9r2-tOb8A62Kgow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+of+the+African+Federation+of+Operational+Research+Societies+%28AFROS%29&rft.atitle=Hybrid+Approach+for+Airspace+Sectorization+Based+on+K-Means+Clustering+and+Genetic+Algorithm+Optimization&rft.au=Addala%2C+Manel&rft.au=Mogtit%2C+Abdessamed&rft.au=Lagha%2C+Mohand&rft.date=2024-11-03&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FAFROS62115.2024.11036909&rft.externalDocID=11036909 |