Hybrid Approach for Airspace Sectorization Based on K-Means Clustering and Genetic Algorithm Optimization
This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm minimizes the operating costs related to airspace complexities, unbalanced workloads, and inter-sector coordination requirements while respectin...
Uloženo v:
| Vydáno v: | 2024 International Conference of the African Federation of Operational Research Societies (AFROS) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
03.11.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm minimizes the operating costs related to airspace complexities, unbalanced workloads, and inter-sector coordination requirements while respecting geometric constraints such as minimum distance, convexity, and connectivity. The algorithm initiates sectorization solutions using K-means clustering and then iteratively refines them using GA operations. A comparative analysis was conducted on ten tests, assigning various weights to cost components. The hybrid approach was tested using air traffic data over a one-hour period. The study evaluated the optimal, worst, and average fitness scores by adjusting the weights' importance orders and comparing the results to the current state-of-the-art method. The results demonstrate that GA with a smaller weighting yields optimum operating costs, highlighting the efficiency of the hybrid approach in resolving the airspace sectorization problem while adhering to geometric constraints. |
|---|---|
| AbstractList | This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm minimizes the operating costs related to airspace complexities, unbalanced workloads, and inter-sector coordination requirements while respecting geometric constraints such as minimum distance, convexity, and connectivity. The algorithm initiates sectorization solutions using K-means clustering and then iteratively refines them using GA operations. A comparative analysis was conducted on ten tests, assigning various weights to cost components. The hybrid approach was tested using air traffic data over a one-hour period. The study evaluated the optimal, worst, and average fitness scores by adjusting the weights' importance orders and comparing the results to the current state-of-the-art method. The results demonstrate that GA with a smaller weighting yields optimum operating costs, highlighting the efficiency of the hybrid approach in resolving the airspace sectorization problem while adhering to geometric constraints. |
| Author | Lagha, Mohand Addala, Manel Mogtit, Abdessamed |
| Author_xml | – sequence: 1 givenname: Manel surname: Addala fullname: Addala, Manel email: addala_manel@univ-blida.dz organization: Aeronautical and Spatial Studies Institute,Aeronautical Sciences Laboratory,Blida,Algeria – sequence: 2 givenname: Abdessamed surname: Mogtit fullname: Mogtit, Abdessamed email: Mogtit.Abdessamed@etu.univblida.dz organization: Aeronautical and Spatial Studies Institute,Aeronautical Sciences Laboratory,Blida,Algeria – sequence: 3 givenname: Mohand surname: Lagha fullname: Lagha, Mohand email: laghamohand@univ-blida.dz organization: Aeronautical and Spatial Studies Institute,Aeronautical Sciences Laboratory,Blida,Algeria |
| BookMark | eNo1kE1OwzAUhI0ECyi9AQtfIMV_ceJliGiLKIpEu6-ek5fWUuJEjlmU0xNEWYxmNNI3i3kgt37wSAjlbMU5M8_F-rPaa8F5uhJMqN9SasPMDVmazOQyZTLXSuX3xG0vNriGFuMYBqjPtB0CLVyYRqiR7rGOQ3DfEN3g6QtM2NA5vCcfCH6iZfc1RQzOnyj4hm7QY3Q1LbrTDMVzT6sxuv6KP5K7FroJl1dfkMP69VBuk121eSuLXeKMjEmToUmRiVkZGJEzYFyDsVqnRnEUCoSqjdEoWsa5lioXFnLbaBDMWqbkgjz9zTpEPI7B9RAux_8D5A_6ilZM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/AFROS62115.2024.11036909 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350386448 |
| EndPage | 5 |
| ExternalDocumentID | 11036909 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-d7e95e025e07a9280a016a9b665941e24a24c996e2f01163482ba8bd6a20bb043 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jul 02 05:55:42 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-d7e95e025e07a9280a016a9b665941e24a24c996e2f01163482ba8bd6a20bb043 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_11036909 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Nov.-3 |
| PublicationDateYYYYMMDD | 2024-11-03 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-3 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 International Conference of the African Federation of Operational Research Societies (AFROS) |
| PublicationTitleAbbrev | AFROS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.88818 |
| Snippet | This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | airspace sectorization balanced workload Clustering algorithms Complexity theory Costs genetic algorithm Genetic algorithms Genetics kmeans clustering algorithm Optimization Reliability Reproducibility of results Shape Stability analysis |
| Title | Hybrid Approach for Airspace Sectorization Based on K-Means Clustering and Genetic Algorithm Optimization |
| URI | https://ieeexplore.ieee.org/document/11036909 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6EePCkRoy_04PXwehKux4nkZCoQIQYbqRd33QJDILDxP_e1zI0Hjx4a5p2S16Xfe977feVkFuFvVnbGFe5B1etCgOjMh5YlgnnHsOs1629PMrBIJ5O1agSq3stDAD4w2fQdE2_l2-X6caVyloIVRGyOVUjNSnlVqy1O50TqlbSex6OBTKaDvI-xpu74b8uTvG40Tv85xuPSONHgUdH39hyTPagOCF5_9Ppq2hS-YBTTDhpkiMz1Th87OvvlayS3iE6WYqNh-AJEI5od75xngj4NKoLS53dNH4zNJm_4qTybUGH-PNYVNMbZNK7n3T7QXVVQpCrqAysBNUBTF8glFqxONSYyWllhOgo3gbGNeMpMhtgmdt4cYY2RsfGCs1CY0IenZJ6sSzgDIOZxlwbKYwzDY6E1ZA6pblUIFKQjJ-ThgvTbLU1w5jtInTxR_8lOXCL4eV70RWpl-sNXJP99KPM39c3fgm_AH1OnqQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl633Waz2c1xLZZKn9gi3kqymdWFPqRuBf-9k3SrePDgLYTMBiZhv5lJvi-E3ErszRpa28o92GqV72mZcc-wTFj1GGYcb-2pG_X78fOzHJZkdceFAQB3-QxqtunO8s0iXdlSWR2hKsBsTm6TnZBz1ljTtTb3c3xZT1qPg5HAnCbEzI_x2sbg19MpDjlaB_-c85BUfzh4dPiNLkdkC-bHJG9_WoYVTUolcIohJ01yzE0VDh-5CnxJrKR3iE-GYqPj9QABiTanK6uKgF-jam6oFZzGXUOT6QsaFa8zOsDfx6w0r5Jx637cbHvlYwleLoPCMxHIEDCAAT9SksW-wlhOSS1EKHkDGFeMp5jbAMvs0YuVtNEq1kYo5mvt8-CEVOaLOZyiM9OYKx0JbWWDA2EUpJZrHkkQKUSMn5GqddPkbS2HMdl46PyP_huy1x73upPuQ79zQfbtwjgyX3BJKsVyBVdkN_0o8vfltVvOL-vVoes |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+of+the+African+Federation+of+Operational+Research+Societies+%28AFROS%29&rft.atitle=Hybrid+Approach+for+Airspace+Sectorization+Based+on+K-Means+Clustering+and+Genetic+Algorithm+Optimization&rft.au=Addala%2C+Manel&rft.au=Mogtit%2C+Abdessamed&rft.au=Lagha%2C+Mohand&rft.date=2024-11-03&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FAFROS62115.2024.11036909&rft.externalDocID=11036909 |