Hybrid Approach for Airspace Sectorization Based on K-Means Clustering and Genetic Algorithm Optimization
This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm minimizes the operating costs related to airspace complexities, unbalanced workloads, and inter-sector coordination requirements while respectin...
Uloženo v:
| Vydáno v: | 2024 International Conference of the African Federation of Operational Research Societies (AFROS) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
03.11.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents a genetic optimization approach for airspace sectorization that combines K-means clustering and a genetic algorithm (GA). The algorithm minimizes the operating costs related to airspace complexities, unbalanced workloads, and inter-sector coordination requirements while respecting geometric constraints such as minimum distance, convexity, and connectivity. The algorithm initiates sectorization solutions using K-means clustering and then iteratively refines them using GA operations. A comparative analysis was conducted on ten tests, assigning various weights to cost components. The hybrid approach was tested using air traffic data over a one-hour period. The study evaluated the optimal, worst, and average fitness scores by adjusting the weights' importance orders and comparing the results to the current state-of-the-art method. The results demonstrate that GA with a smaller weighting yields optimum operating costs, highlighting the efficiency of the hybrid approach in resolving the airspace sectorization problem while adhering to geometric constraints. |
|---|---|
| DOI: | 10.1109/AFROS62115.2024.11036909 |