Adaptive Optimization of Shield Tunnel Segment Assembly Points by Integrating DBSCAN and Genetic Algorithm

In shield tunnel construction, segment assembly is a critical process, and its quality directly affects the overall performance and safety of the tunnel. Although the technology for shield tunnel segment assembly has developed, it still has limitations. Traditional methods for selecting assembly poi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 4th International Conference on Electronic Information Engineering and Computer Communication (EIECC) S. 192 - 195
Hauptverfasser: Xu, Xiao, Liu, Hu
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 27.12.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In shield tunnel construction, segment assembly is a critical process, and its quality directly affects the overall performance and safety of the tunnel. Although the technology for shield tunnel segment assembly has developed, it still has limitations. Traditional methods for selecting assembly points often rely on experience or simple rules, making it difficult to adapt to the complex and dynamic construction environment.Genetic algorithms are widely used in optimization problems, and some studies have applied them to weight optimization for segment assembly point selection. However, existing methods often use fixed interval classification, which lacks flexibility and cannot dynamically adjust based on the actual data distribution. This leads to classification errors, particularly when dealing with unevenly distributed data.To address these issues, this paper proposes an innovative method that integrates DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and genetic algorithms, aiming to achieve adaptive optimization of shield tunnel segment assembly points. The goal is to improve the accuracy and adaptability of assembly point selection, thereby enhancing tunnel construction quality.
AbstractList In shield tunnel construction, segment assembly is a critical process, and its quality directly affects the overall performance and safety of the tunnel. Although the technology for shield tunnel segment assembly has developed, it still has limitations. Traditional methods for selecting assembly points often rely on experience or simple rules, making it difficult to adapt to the complex and dynamic construction environment.Genetic algorithms are widely used in optimization problems, and some studies have applied them to weight optimization for segment assembly point selection. However, existing methods often use fixed interval classification, which lacks flexibility and cannot dynamically adjust based on the actual data distribution. This leads to classification errors, particularly when dealing with unevenly distributed data.To address these issues, this paper proposes an innovative method that integrates DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and genetic algorithms, aiming to achieve adaptive optimization of shield tunnel segment assembly points. The goal is to improve the accuracy and adaptability of assembly point selection, thereby enhancing tunnel construction quality.
Author Xu, Xiao
Liu, Hu
Author_xml – sequence: 1
  givenname: Xiao
  surname: Xu
  fullname: Xu, Xiao
  email: 18506113439@163.com
  organization: Shanghai Institute of Technology,College of Rail Transit,Shanghai,China
– sequence: 2
  givenname: Hu
  surname: Liu
  fullname: Liu, Hu
  email: liuhu@edu.com.cn
  organization: Shanghai Institute of Technology,College of Rail Transit,Shanghai,China
BookMark eNo1kMFOwzAQRI0EByj9Aw77Ay2113bqYwilVKooUnqv7HqTGiVOlRik8vVEAk5PM9Kbw9yx69hFYgz4Ys75wjyuNqui0FKhmYuFkPOxE4ZrvGJTk5klIlcotRC37CP39pzCF8FuRBu-bQpdhK6C8hSo8bD_jJEaKKluKSbIh4Fa11zgvQsxDeAusImJ6n70Yg3PT2WRv4GNHtYUKYUj5E3d9SGd2nt2U9lmoOkfJ2z_stoXr7Ptbr0p8u0sGEwznzm0XBE_Lp2T5DkXaJz2SldolVeOrJMcK22k5DrL1BHHaI23UmjUiBP28DsbiOhw7kNr-8vh_wH8AUclVpI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/EIECC64539.2024.10929163
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331534622
EndPage 195
ExternalDocumentID 10929163
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-d7b3a15e1c8bb4ed11239b6d56f3a5d5beab413f694416775c3413a9da4263633
IEDL.DBID RIE
IngestDate Wed Apr 02 05:44:47 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-d7b3a15e1c8bb4ed11239b6d56f3a5d5beab413f694416775c3413a9da4263633
PageCount 4
ParticipantIDs ieee_primary_10929163
PublicationCentury 2000
PublicationDate 2024-Dec.-27
PublicationDateYYYYMMDD 2024-12-27
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-27
  day: 27
PublicationDecade 2020
PublicationTitle 2024 4th International Conference on Electronic Information Engineering and Computer Communication (EIECC)
PublicationTitleAbbrev EIECC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8938236
Snippet In shield tunnel construction, segment assembly is a critical process, and its quality directly affects the overall performance and safety of the tunnel....
SourceID ieee
SourceType Publisher
StartPage 192
SubjectTerms Accuracy
Adaptive optimization
Assembly
Assembly point selection
Classification algorithms
DBSCAN
Genetic algorithms
Heuristic algorithms
LOF
Noise
Optimization
Safety
Segment assembly
Title Adaptive Optimization of Shield Tunnel Segment Assembly Points by Integrating DBSCAN and Genetic Algorithm
URI https://ieeexplore.ieee.org/document/10929163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6EePCkRoy_8w5ei2Pr2vWIEyIXJIEDN9KuHc7ARmCY8N_7OobGgwdPbZqmTfrjfS_t-75HyCNDF9swP6USO1DGkg5FG6ipVsYyp5eGlSrZhBgOo-lUjmqyesWFsdZWwWe27arVX74pkq17KsMbjmCODkSDNITge7LWITrHk0-9QS-OOQsrAorP2ofuvxKnVLjRP_3njGek9cPAg9E3tpyTI5tfkI-uUStnnuANi2XNoIQiBZfRemFgsnVRKzC2czcsuA_dpV7sYFRkebkBvYNBrQ6Bg8LL8zjuDkHlBpz4NJ4g6C7mxTor35ctMun3JvErrXMl0EwGJTVCB6oT2k4Sac2sQS8qkJqbkKeBCk2ordIIVymX6P5wIcLEoZeSRjnBdh4El6SZF7m9IuBrtDtewj3NFDPSk1oFNo2UijhPEP-vScut02y1V8OYHZbo5o_2W3LidsOFgPjijjTL9dbek-Pks8w264dqD78ABz-fhA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTfSkRoy_fQevw7F13XrEiYGIkwQO3Ei7djgDG4Fhwn_v6xgaDx48rVnWLmnX931Z3_c9Qu4pUmxFncTi-IBFady0MAZKSwqlqfFLw0ZZbMKPomA04v1KrF5qYbTWZfKZbphmeZav8nhlfpXhDkcwRwKxS_Y8Sh17I9fa5ufY_KHdbYcho14pQXFoY9vhV-mUEjmej_75zmNS_9HgQf8bXU7Ijs5OyUdLibkJUPCGl1mloYQ8AVPTeqpguDJ5KzDQEzMsmCPdmZyuoZ-nWbEEuYZu5Q-Bg8LT4yBsRSAyBcZ-Gr8haE0n-SIt3md1MnxuD8OOVVVLsFLuFpbypSuanm7GgZRUK-RRLpdMeSxxhac8qYVEwEoYRwLEfN-LDX4JroSxbGeue0ZqWZ7pcwKOxMhjx8yWVFDFbS6Fq5NAiICxGBnABambeRrPN34Y4-0UXf5x_44cdIavvXGvG71ckUOzMiYhxPGvSa1YrPQN2Y8_i3S5uC3X8wuBK6LL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+4th+International+Conference+on+Electronic+Information+Engineering+and+Computer+Communication+%28EIECC%29&rft.atitle=Adaptive+Optimization+of+Shield+Tunnel+Segment+Assembly+Points+by+Integrating+DBSCAN+and+Genetic+Algorithm&rft.au=Xu%2C+Xiao&rft.au=Liu%2C+Hu&rft.date=2024-12-27&rft.pub=IEEE&rft.spage=192&rft.epage=195&rft_id=info:doi/10.1109%2FEIECC64539.2024.10929163&rft.externalDocID=10929163