FastDTW-Encoded Spatial-temporal Attention Dual Graph Convolutional Network for Traffic Flow Prediction

Addressing the insufficient extraction of traffic network topology features and inadequate topological feature extraction and spatial-temporal dependency modeling in traffic flow prediction, we construct a dual graph convolutional network algorithm based on fast Dynamic Time Warping (fastDTW) and sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE International Symposium on IT in Medicine and Education S. 720 - 725
Hauptverfasser: Shen, Bingqi, Chen, Linlong, Yang, Nan
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 13.09.2024
Schlagworte:
ISSN:2474-3828
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Addressing the insufficient extraction of traffic network topology features and inadequate topological feature extraction and spatial-temporal dependency modeling in traffic flow prediction, we construct a dual graph convolutional network algorithm based on fast Dynamic Time Warping (fastDTW) and spatial-temporal attention mechanism (STADGCN). Firstly, the spatial-temporal attention module is employed to capture the dynamic influence weights of the spatial-temporal dimensions. Secondly, fastDTW is utilized to measure similarity between nodes in the traffic network, enhancing topology-based feature extraction through adjacency matrix encoding. Subsequently, dual graph convolutional and temporal convolutional networks are constructed to algorithm spatial-temporal dependencies. Finally, the prediction performance of the STADGCN algorithm is verified by a weighted fusion of recent, daily, and weekly components based on real highway network detector data. Experimental results demonstrate that compared to ARIMA, VAR, FNN, GAT, GCN, GWNet, STGCN, and ASTGCN, STADGCN exhibits superior performance with MAPE reductions of 81.97%, 64.52%, 78.85%, 69.44%, 54.17%, 8.33%, 8.33%, and 26.67% respectively, on the pems08 dataset.
AbstractList Addressing the insufficient extraction of traffic network topology features and inadequate topological feature extraction and spatial-temporal dependency modeling in traffic flow prediction, we construct a dual graph convolutional network algorithm based on fast Dynamic Time Warping (fastDTW) and spatial-temporal attention mechanism (STADGCN). Firstly, the spatial-temporal attention module is employed to capture the dynamic influence weights of the spatial-temporal dimensions. Secondly, fastDTW is utilized to measure similarity between nodes in the traffic network, enhancing topology-based feature extraction through adjacency matrix encoding. Subsequently, dual graph convolutional and temporal convolutional networks are constructed to algorithm spatial-temporal dependencies. Finally, the prediction performance of the STADGCN algorithm is verified by a weighted fusion of recent, daily, and weekly components based on real highway network detector data. Experimental results demonstrate that compared to ARIMA, VAR, FNN, GAT, GCN, GWNet, STGCN, and ASTGCN, STADGCN exhibits superior performance with MAPE reductions of 81.97%, 64.52%, 78.85%, 69.44%, 54.17%, 8.33%, 8.33%, and 26.67% respectively, on the pems08 dataset.
Author Chen, Linlong
Shen, Bingqi
Yang, Nan
Author_xml – sequence: 1
  givenname: Bingqi
  surname: Shen
  fullname: Shen, Bingqi
  email: bk99_2022@163.com
  organization: Guiyang Institute of Humanities and Technology,College of Big Data and Information Engineering,Guiyang,China,550025
– sequence: 2
  givenname: Linlong
  surname: Chen
  fullname: Chen, Linlong
  organization: Guiyang Institute of Humanities and Technology,College of Big Data and Information Engineering,Guiyang,China,550025
– sequence: 3
  givenname: Nan
  surname: Yang
  fullname: Yang, Nan
  organization: Guiyang Institute of Humanities and Technology,College of Big Data and Information Engineering,Guiyang,China,550025
BookMark eNotkMtOwzAURA0CiVL6B134B1Ku3_Gy6otK5SERiWXlxDYE0jhyXCr-nlSwGs3R0SzmFl21oXUITQnMCAF9vy0eV5JxKmcUKJ8BEC4v0EQrnTMBTEip4BKNKFc8YznNb9Ck7z9h8CQFSeUIva9Nn5bFW7Zqq2Cdxa-dSbVpsuQOXYimwfOUXJvq0OLlcaibaLoPvAjtd2iOZzywJ5dOIX5hHyIuovG-rvC6CSf8Ep2tq7N1h669aXo3-c8xKtarYvGQ7Z4328V8l9WapczKkhNntC7BiMpTB1WuSuot8UJVGri0ghOvjPWSMFKW3hHGnVEyz6Hkho3R9G-2ds7tu1gfTPzZD1cxIUCyX_AZW3Y
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ITME63426.2024.00146
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 9798350356670
EISSN 2474-3828
EndPage 725
ExternalDocumentID 10935506
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i93t-d6b41ea99b0a5cf2e0c87b2fd1f57c9046d541f7adf6131bbfe134ea76880b4a3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:40:14 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-d6b41ea99b0a5cf2e0c87b2fd1f57c9046d541f7adf6131bbfe134ea76880b4a3
PageCount 6
ParticipantIDs ieee_primary_10935506
PublicationCentury 2000
PublicationDate 2024-Sept.-13
PublicationDateYYYYMMDD 2024-09-13
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-13
  day: 13
PublicationDecade 2020
PublicationTitle IEEE International Symposium on IT in Medicine and Education
PublicationTitleAbbrev ITME
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001620626
Score 1.8828553
Snippet Addressing the insufficient extraction of traffic network topology features and inadequate topological feature extraction and spatial-temporal dependency...
SourceID ieee
SourceType Publisher
StartPage 720
SubjectTerms Attention mechanisms
Convolution
Correlation
FastDTW
Feature extraction
Graph convolutional networks
Heuristic algorithms
Network topology
Prediction algorithms
Predictive models
Spatial-temporal dependency modeling
Time series analysis
Traffic flow prediction
Title FastDTW-Encoded Spatial-temporal Attention Dual Graph Convolutional Network for Traffic Flow Prediction
URI https://ieeexplore.ieee.org/document/10935506
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagQoiJVxFveWANTZyHkxHRBpBo1SGCbpVjn1EllKI2LX-fOydQFga2xLJ8kn3S3dnf9x1jN8JodA10XiGt71GF4KWWIFBGCAvWSu24VS_PcjRKJ5Ns3JLVHRcGABz4DG7p073lm7le0VVZL3Bq4CSwvS2lbMhamwuVRPiYnbf0OJzaeyqGgyTEEIRloCCRbJfm_mqi4mJIvv9P6wesu2Hj8fFPnDlkW1Adsd1h-yh-zN5ytaz7xas3qIigbji1GUa38lrZqXd-V9cNqpH3V_j7QCLVHFdft36HY6MGDs4xh-UYv0hYgufv80-0TIZoVpcV-aC4f_Ta_gneLAtrzyRlFIDKstJXsbYCfJ3KUlgT2FjqDAtjE0eBlcpYjOlBWVoIwggUFiCpX0YqPGGdal7BKeM2DRMVg8L8yESpBgXWT7SFCPOnSGfijHVpv6YfjULG9Hurzv8Yv2B7dCSEuwjCS9apFyu4Yjt6Xc-Wi2t3rl8ziKVc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQIGDiVcQbD6yhieO8RkQbWtFGHSLoVjn2GVWqUtSm5e9zdgJlYWBLLMsn2Sfdnf193xFyz5RE10DnZZF2HVMhOLE2ECjFmAatI2m5Va-DKMvi8TgZNWR1y4UBAAs-gwfzad_y1VyuzFVZ27Nq4EZgeyfgnHk1XWtzpRIyF_PzhiCHk9v9fNgNfQxCWAgyI5NtE91fbVRsFEkP_2n_iLQ2fDw6-ok0x2QLyhOyN2yexU_JeyqWVSd_c7qloagrahoNo2M5jfDUjD5WVY1rpJ0V_j4bmWqKq68bz8OxrAaEU8xiKUYwIy1B09n8Ey0bQ2ZWi-RpN3_qOU0HBWea-JWjwoJ7IJKkcEUgNQNXxlHBtPJ0EMkES2MVcE9HQmmM6l5RaPB8DgJLkNgtuPDPyHY5L-GcUB37oQhAYIakeCxBgHZDqYFjBsVlwi5Iy-zX5KPWyJh8b9XlH-N3ZL-XDweTQT97uSIH5ngMCsPzr8l2tVjBDdmV62q6XNzaM_4C-T6oow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Symposium+on+IT+in+Medicine+and+Education&rft.atitle=FastDTW-Encoded+Spatial-temporal+Attention+Dual+Graph+Convolutional+Network+for+Traffic+Flow+Prediction&rft.au=Shen%2C+Bingqi&rft.au=Chen%2C+Linlong&rft.au=Yang%2C+Nan&rft.date=2024-09-13&rft.pub=IEEE&rft.eissn=2474-3828&rft.spage=720&rft.epage=725&rft_id=info:doi/10.1109%2FITME63426.2024.00146&rft.externalDocID=10935506