ANN-Based Space Vector PWM Modulation for Permanent-Magnet Synchronous Motors

This paper proposes an artificial neural network (ANN)-based space vector PWM (SVPWM) inverter controller for permanent-magnet synchronous motors (PMSM). Traditional SVPWM control methods involve complex computations and exhibit poor robustness to motor parameter variations and load disturbances, ma...

Full description

Saved in:
Bibliographic Details
Published in:International Conference on Power Electronics and Drive Systems (Online) pp. 1 - 5
Main Authors: Huang, Zhen, Gong, Jiawei, Wang, Chao, Wang, Weiping, Jia, Shaofeng, Huang, Kunjie, Xia, Yonghong
Format: Conference Proceeding
Language:English
Published: IEEE 21.07.2025
Subjects:
ISSN:2164-5264
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes an artificial neural network (ANN)-based space vector PWM (SVPWM) inverter controller for permanent-magnet synchronous motors (PMSM). Traditional SVPWM control methods involve complex computations and exhibit poor robustness to motor parameter variations and load disturbances, making them inadequate for high-precision and high-dynamic-response applications. Due to its strong nonlinear mapping capability and adaptability, ANN can optimize SVPWM control strategies, enhancing system real-time performance and robustness. This study employs an ANN trained using the Bayesian regularization backpropagation algorithm and introduces a modular, low-complexity ANN-based SVPWM implementation scheme. Compared to conventional methods, the proposed approach reduces the online computational burden, improves efficiency, and is validated through simulations in the MATLAB/Simulink environment. The results demonstrate that ANN-based SVPWM control maintains high waveform quality across different modulation indices while reducing computational costs by approximately 10 % - 15 %.
AbstractList This paper proposes an artificial neural network (ANN)-based space vector PWM (SVPWM) inverter controller for permanent-magnet synchronous motors (PMSM). Traditional SVPWM control methods involve complex computations and exhibit poor robustness to motor parameter variations and load disturbances, making them inadequate for high-precision and high-dynamic-response applications. Due to its strong nonlinear mapping capability and adaptability, ANN can optimize SVPWM control strategies, enhancing system real-time performance and robustness. This study employs an ANN trained using the Bayesian regularization backpropagation algorithm and introduces a modular, low-complexity ANN-based SVPWM implementation scheme. Compared to conventional methods, the proposed approach reduces the online computational burden, improves efficiency, and is validated through simulations in the MATLAB/Simulink environment. The results demonstrate that ANN-based SVPWM control maintains high waveform quality across different modulation indices while reducing computational costs by approximately 10 % - 15 %.
Author Gong, Jiawei
Wang, Weiping
Wang, Chao
Huang, Kunjie
Xia, Yonghong
Jia, Shaofeng
Huang, Zhen
Author_xml – sequence: 1
  givenname: Zhen
  surname: Huang
  fullname: Huang, Zhen
  email: zhenhuang@ncu.edu.cn
  organization: School of Information Engineering, Nanchang University
– sequence: 2
  givenname: Jiawei
  surname: Gong
  fullname: Gong, Jiawei
  email: iamgjw@email.ncu.edu.cn
  organization: School of Information Engineering, Nanchang University
– sequence: 3
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  email: 416100240312@email.ncu.edu.cn
  organization: School of Information Engineering, Nanchang University
– sequence: 4
  givenname: Weiping
  surname: Wang
  fullname: Wang, Weiping
  email: jiangte@aliyun.com
  organization: Jiangxi Jiangte Motor Co., Ltd
– sequence: 5
  givenname: Shaofeng
  surname: Jia
  fullname: Jia, Shaofeng
  email: shaofengjia@xjtu.edu.cn
  organization: School of Electrical Engineering, Xi'an Jiaotong University
– sequence: 6
  givenname: Kunjie
  surname: Huang
  fullname: Huang, Kunjie
  email: huangkj@email.ncu.edu.cnm
  organization: School of Information Engineering, Nanchang University
– sequence: 7
  givenname: Yonghong
  surname: Xia
  fullname: Xia, Yonghong
  email: 090548@ncu.edu.cn
  organization: School of Information Engineering, Nanchang University
BookMark eNo1kMtOwkAYhUejiYh9AxP7AsW5_XNZIuIloUhSoksynf6jNTAlbVnw9tSoq5N8Od9ZnGtyEZuIhNwxOmGM2vvV_LFQwoKZcMphYExKrekZSay2RggGggJl52TEmZIZcCWvSNJ135RSwRnTRo1IPl0uswfXYZUWe-cxfUffN226-sjTvKkOW9fXTUzDD8J25yLGPsvdZ8Q-LY7Rf7VNbA7d0B2s7oZcBrftMPnLMVk_zdezl2zx9vw6my6y2oo-q4TigUsXgNrSKAPCluiY8iWTnlMNEox3qFhVKvQogoRAwehghNEQQIzJ7e9sjYibfVvvXHvc_B8gTr4YUO8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PEDS63958.2025.11144770
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331530501
EISSN 2164-5264
EndPage 5
ExternalDocumentID 11144770
Genre orig-research
GrantInformation_xml – fundername: Jiangxi Provincial Natural Science Foundation
  grantid: 20232BAB204062
  funderid: 10.13039/501100004479
– fundername: National Natural Science Foundation of China
  grantid: 52467004
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-d362f24af509b868539bea16cb14c2075458cae61db6ece3f45f0587f83875f53
IEDL.DBID RIE
IngestDate Wed Sep 10 07:40:45 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-d362f24af509b868539bea16cb14c2075458cae61db6ece3f45f0587f83875f53
PageCount 5
ParticipantIDs ieee_primary_11144770
PublicationCentury 2000
PublicationDate 2025-July-21
PublicationDateYYYYMMDD 2025-07-21
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-July-21
  day: 21
PublicationDecade 2020
PublicationTitle International Conference on Power Electronics and Drive Systems (Online)
PublicationTitleAbbrev PEDS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211786
Score 1.9158492
Snippet This paper proposes an artificial neural network (ANN)-based space vector PWM (SVPWM) inverter controller for permanent-magnet synchronous motors (PMSM)....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Aerospace electronics
Artificial neural networks
Backpropagation algorithms
Bayes methods
Computational efficiency
Motors
Robustness
Space vector pulse width modulation
Synchronous motors
Vectors
Title ANN-Based Space Vector PWM Modulation for Permanent-Magnet Synchronous Motors
URI https://ieeexplore.ieee.org/document/11144770
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCFVxFvZWB12zh-xCOPVgwkitSqdKvs5Iy6pKhNkfj3nNO0wMDAZll2Ep0Vf_7Od_cRchcqG7FC4goYLSh3wlCrIaIWBMc92UFRaxGMX1SaxpOJzppk9ToXBgDq4DPo-GZ9l1_M85V3lXXxv-RcKWTou0rJdbLW1qESIZVRsWxiuMKe7mb9pyECsPARXEx0NrN_6ajUMDI4_OcHHJH2d0JekG2h5pjsQHlCDn7UEjwlyX2a0gfEpCIYIg-GYFz744PsNQmSedGodAXOd_nduMQ30cS8lVAFw88y90Vy56sljvX6O20yGvRHj8-00UqgMx1VtEAccowbh_hvY4kYrC2YUOY25DnDYwEXcW5AhoWVkEPkuHA9ESsXR0hYnIjOSKucl3BOAsm49acOfI7h2kCsmBQaaR5jCpwVF6TtDTN9X1fDmG5scvlH_xXZ9-b3_lAWXpNWtVjBDdnLP6rZcnFbr-EXwuicBw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQQIWXkW8ycDqtnFsJxl5tCqiiSK1Kt0qOzmjLglqUyT-Pec0LTAwsEVW4kQ-2d99l7v7CLlzfe2xTKIFVCgoN0JRHYJHNQiOZ7KBrNIiGA_8OA4mkzCpi9WrWhgAqJLPoGUvq3_5WZEubaisjfuSc99Hhr4tOGedVbnWJqTiIZnxA1lncbmdsJ10n4YIwcLmcDHRWj__S0mlApLewT8_4ZA0v0vynGQDNkdkC_Jjsv-jm-AJie7jmD4gKmXOEJkwOOMqIu8kr5ETFVmt0-UYO2TP4xzfRCP1lkPpDD_z1LbJLZYLvNcq8DTJqNcdPfZprZZAZ6FX0gyRyDCuDHoAOpCIwqEG5cpUuzxl6BhwEaQKpJtpCSl4hgvTEYFvAg8pixHeKWnkRQ5nxJGMa-t34DyKhwoCn0kRItFjzAejxTlp2oWZvq_6YUzXa3Lxx_gt2e2PosF08By_XJI9awobHWXuFWmU8yVck530o5wt5jeVPb8AE2efTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Power+Electronics+and+Drive+Systems+%28Online%29&rft.atitle=ANN-Based+Space+Vector+PWM+Modulation+for+Permanent-Magnet+Synchronous+Motors&rft.au=Huang%2C+Zhen&rft.au=Gong%2C+Jiawei&rft.au=Wang%2C+Chao&rft.au=Wang%2C+Weiping&rft.date=2025-07-21&rft.pub=IEEE&rft.eissn=2164-5264&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPEDS63958.2025.11144770&rft.externalDocID=11144770