Classification of Cervical Precancerous Cells Using Gabor Filter and Haar Wavelet Features Based on Neural Networks
Cervical cancer remains a major global health concern, particularly in low-resource regions. This study explored the classification of cervical precancerous cell images using texture-based feature extraction and Artificial Neural Networks (ANNs). Gabor Filter and Haar Wavelet Transform were applied...
Gespeichert in:
| Veröffentlicht in: | 2024 Beyond Technology Summit on Informatics International Conference (BTS-I2C) S. 316 - 321 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
19.12.2024
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cervical cancer remains a major global health concern, particularly in low-resource regions. This study explored the classification of cervical precancerous cell images using texture-based feature extraction and Artificial Neural Networks (ANNs). Gabor Filter and Haar Wavelet Transform were applied to extract critical morphological and textural features, which were classified using Multilayer Perceptrons (MLPs) trained with One Step Secant (OSS) and Gradient Descent with Momentum and Adaptive Learning Rate Backpropagation (GDX) algorithms. The best performance was achieved using Haar Wavelet features with OSS-MLP, attaining a training accuracy of 79.3% with 15 hidden neurons. Evaluation through Receiver Operating Characteristic (ROC) curves demonstrated OSS-MLP's capability to leverage texture features for classification. This research emphasizes the potential of integrating advanced feature extraction with optimized neural networks to develop a reliable and automated diagnostic system for cervical cancer, providing a promising solution for efficient and accurate screening. |
|---|---|
| AbstractList | Cervical cancer remains a major global health concern, particularly in low-resource regions. This study explored the classification of cervical precancerous cell images using texture-based feature extraction and Artificial Neural Networks (ANNs). Gabor Filter and Haar Wavelet Transform were applied to extract critical morphological and textural features, which were classified using Multilayer Perceptrons (MLPs) trained with One Step Secant (OSS) and Gradient Descent with Momentum and Adaptive Learning Rate Backpropagation (GDX) algorithms. The best performance was achieved using Haar Wavelet features with OSS-MLP, attaining a training accuracy of 79.3% with 15 hidden neurons. Evaluation through Receiver Operating Characteristic (ROC) curves demonstrated OSS-MLP's capability to leverage texture features for classification. This research emphasizes the potential of integrating advanced feature extraction with optimized neural networks to develop a reliable and automated diagnostic system for cervical cancer, providing a promising solution for efficient and accurate screening. |
| Author | Aila Mat Zin, Anani Hussain, Faezahtul Arbaeyah Jusman, Yessi Resky Pahlevi, Nanda Intan Rahmawati, Maryza Winiarti, Sri |
| Author_xml | – sequence: 1 givenname: Yessi surname: Jusman fullname: Jusman, Yessi email: yjusman@umy.ac.id organization: Universitas Muhammadiyah Yogyakarta,Faculty of Engineering (Center of Artificial Intelligence and Robotics Studies),Department of Electrical Engineering,Yogyakarta,Indonesia – sequence: 2 givenname: Nanda surname: Resky Pahlevi fullname: Resky Pahlevi, Nanda email: nanda.resky.ft20@mail.umy.ac.id organization: Universitas Muhammadiyah Yogyakarta,Faculty of Engineering,Department of Electrical Engineering,Yogyakarta,Indonesia – sequence: 3 givenname: Maryza surname: Intan Rahmawati fullname: Intan Rahmawati, Maryza email: maryzaintan@studentmail.unimap.edu.my organization: Universiti Malaysia Perlis,Faculty of Electrical Engineering and Technology,Department of Mechatronic Engineering,Perlis,Malaysia – sequence: 4 givenname: Anani surname: Aila Mat Zin fullname: Aila Mat Zin, Anani email: ailakb@usm.my organization: School of Medical Sciences, Universiti Sains Malaysia,Department of Pathology,Kelantan,Malaysia – sequence: 5 givenname: Faezahtul Arbaeyah surname: Hussain fullname: Hussain, Faezahtul Arbaeyah email: faezahtul@usm.my organization: School of Medical Sciences, Universiti Sains Malaysia,Department of Pathology,Kelantan,Malaysia – sequence: 6 givenname: Sri surname: Winiarti fullname: Winiarti, Sri email: sri.winiarti@tif.uad.ac.id organization: Universitas Ahmad Dahlan,Faculty of Industrial Technology,Department of Informatic,Yogyakarta,Malaysia |
| BookMark | eNo1kE1LxDAYhCPoQdf9Bx6C99Z8tWmObnE_YFkFKx6Xt81bCcZWknbFf29APQ0zh4eZuSLnwzggIbec5Zwzc7dqnrOdqEtZSJULJlSeUsW11mdkabSppOQFqwptLkmsPcToetfB5MaBjj2tMZyS9fQpYAdDh2GcY0q9j_QluuGNbqAdA107P2GgMFi6BQj0FU7ocaJrhGkOGOkKIlqaoAecQ-IdcPoaw3u8Jhc9-IjLP12QZv3Q1Nts_7jZ1ff7zBk5ZVYyJUyplQXBU19Vdpob2bO2anVhbVmhFLqQLbOysKyzjAmrWtFxVZm0UC7IzS_WIeLxM7gPCN_H_yvkDyg3WYw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BTS-I2C63534.2024.10941777 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331508579 |
| EndPage | 321 |
| ExternalDocumentID | 10941777 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Universitas Muhammadiyah Yogyakarta funderid: 10.13039/100019469 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-d30429674da2115046c7193f0b8b75dd68e32753b0d35d0cd002d4b2c14893313 |
| IEDL.DBID | RIE |
| IngestDate | Thu Apr 10 08:20:04 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-d30429674da2115046c7193f0b8b75dd68e32753b0d35d0cd002d4b2c14893313 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10941777 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Dec.-19 |
| PublicationDateYYYYMMDD | 2024-12-19 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec.-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 Beyond Technology Summit on Informatics International Conference (BTS-I2C) |
| PublicationTitleAbbrev | BTS-I2C |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8928643 |
| Snippet | Cervical cancer remains a major global health concern, particularly in low-resource regions. This study explored the classification of cervical precancerous... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 316 |
| SubjectTerms | Accuracy Biological neural networks Cervical cancer Classification Computer architecture Feature extraction Gabor Filter Gabor filters Haar Wavelet Microprocessors Neural Networks ROC Testing Training Wavelet transforms |
| Title | Classification of Cervical Precancerous Cells Using Gabor Filter and Haar Wavelet Features Based on Neural Networks |
| URI | https://ieeexplore.ieee.org/document/10941777 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXjdurtJN5tri7WClIJFeytJJguFspV9-PudSVvFgwdvS3aTwAzZb2Yy3wxj9wkYkABZBJYoOej4RMYVaMhpBcoINJFDaODtRU2n-WKhZzuyeuDCeO9D8pnv02O4y4eNaylUhidcy0Qp1WEdpbItWWtXSBRfPQznr9FzOkIIFRQtSWV_P-FX65SAHOPjf-55wno_HDw--0aXU3bgyzNWhx6WlN0TBMo3BR-Fw27W-LF3pMIKfXkcXa9rHvIB-BPpmY9XdC_OTQl8YkzF3w21nGg42YAt-tx8iHgGHBeleh243nSbIF732Hz8OB9Nol3bhGilRRMBBSh0piSYlMw9mTmFVloR29yqAaol9yJFJ8XGIAYQO8B_IkibuoTq0IhEnLNuuSn9BeMpwpdRMvcxFMSQtULbIiusTMDFTolL1iOBLT-2hTGWe1ld_TF-zY5ILZQNkugb1m2q1t-yQ_fZrOrqLqjzCzZaoh8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI1gIMEJEEN8kwPXjrbJmva6ibGJUU2igt2mNE6lSVOH2o7fj51tIA4cuFVpk0i20mc7fjZj9wFokACRBzlRctDx8bQp0JBLFCgt0ER2oYG3sUrTeDpNJhuyuuPCWGtd8pnt0KO7y4elWVGoDE94IgOl1C7b60oZ-mu61qaUKL586GWv3ijsI4gKipeEsrOd8qt5isOOwdE_dz1m7R8WHp9848sJ27HlKatdF0vK73Ei5cuC991x1wv82BpSYoXePI4uFjV3GQH8iTTNB3O6Gee6BD7UuuLvmppONJyswBV63byHiAYcF6WKHbheuk4Rr9ssGzxm_aG3aZzgzRPReEAhiiRSEnRIBp-MjEI7rfDzOFddVExsRYhuSu6D6IJvAP-KIPPQBFSJRgTijLXKZWnPGQ8RwLSSsfWhII5sLpK8iIpcBmB8o8QFa5PAZh_r0hizrawu_xi_YwfD7GU8G4_S5yt2SCqi3JAguWatplrZG7ZvPpt5Xd061X4B0r-lZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+Beyond+Technology+Summit+on+Informatics+International+Conference+%28BTS-I2C%29&rft.atitle=Classification+of+Cervical+Precancerous+Cells+Using+Gabor+Filter+and+Haar+Wavelet+Features+Based+on+Neural+Networks&rft.au=Jusman%2C+Yessi&rft.au=Resky+Pahlevi%2C+Nanda&rft.au=Intan+Rahmawati%2C+Maryza&rft.au=Aila+Mat+Zin%2C+Anani&rft.date=2024-12-19&rft.pub=IEEE&rft.spage=316&rft.epage=321&rft_id=info:doi/10.1109%2FBTS-I2C63534.2024.10941777&rft.externalDocID=10941777 |