Classification of Cervical Precancerous Cells Using Gabor Filter and Haar Wavelet Features Based on Neural Networks

Cervical cancer remains a major global health concern, particularly in low-resource regions. This study explored the classification of cervical precancerous cell images using texture-based feature extraction and Artificial Neural Networks (ANNs). Gabor Filter and Haar Wavelet Transform were applied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 Beyond Technology Summit on Informatics International Conference (BTS-I2C) S. 316 - 321
Hauptverfasser: Jusman, Yessi, Resky Pahlevi, Nanda, Intan Rahmawati, Maryza, Aila Mat Zin, Anani, Hussain, Faezahtul Arbaeyah, Winiarti, Sri
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 19.12.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cervical cancer remains a major global health concern, particularly in low-resource regions. This study explored the classification of cervical precancerous cell images using texture-based feature extraction and Artificial Neural Networks (ANNs). Gabor Filter and Haar Wavelet Transform were applied to extract critical morphological and textural features, which were classified using Multilayer Perceptrons (MLPs) trained with One Step Secant (OSS) and Gradient Descent with Momentum and Adaptive Learning Rate Backpropagation (GDX) algorithms. The best performance was achieved using Haar Wavelet features with OSS-MLP, attaining a training accuracy of 79.3% with 15 hidden neurons. Evaluation through Receiver Operating Characteristic (ROC) curves demonstrated OSS-MLP's capability to leverage texture features for classification. This research emphasizes the potential of integrating advanced feature extraction with optimized neural networks to develop a reliable and automated diagnostic system for cervical cancer, providing a promising solution for efficient and accurate screening.
AbstractList Cervical cancer remains a major global health concern, particularly in low-resource regions. This study explored the classification of cervical precancerous cell images using texture-based feature extraction and Artificial Neural Networks (ANNs). Gabor Filter and Haar Wavelet Transform were applied to extract critical morphological and textural features, which were classified using Multilayer Perceptrons (MLPs) trained with One Step Secant (OSS) and Gradient Descent with Momentum and Adaptive Learning Rate Backpropagation (GDX) algorithms. The best performance was achieved using Haar Wavelet features with OSS-MLP, attaining a training accuracy of 79.3% with 15 hidden neurons. Evaluation through Receiver Operating Characteristic (ROC) curves demonstrated OSS-MLP's capability to leverage texture features for classification. This research emphasizes the potential of integrating advanced feature extraction with optimized neural networks to develop a reliable and automated diagnostic system for cervical cancer, providing a promising solution for efficient and accurate screening.
Author Aila Mat Zin, Anani
Hussain, Faezahtul Arbaeyah
Jusman, Yessi
Resky Pahlevi, Nanda
Intan Rahmawati, Maryza
Winiarti, Sri
Author_xml – sequence: 1
  givenname: Yessi
  surname: Jusman
  fullname: Jusman, Yessi
  email: yjusman@umy.ac.id
  organization: Universitas Muhammadiyah Yogyakarta,Faculty of Engineering (Center of Artificial Intelligence and Robotics Studies),Department of Electrical Engineering,Yogyakarta,Indonesia
– sequence: 2
  givenname: Nanda
  surname: Resky Pahlevi
  fullname: Resky Pahlevi, Nanda
  email: nanda.resky.ft20@mail.umy.ac.id
  organization: Universitas Muhammadiyah Yogyakarta,Faculty of Engineering,Department of Electrical Engineering,Yogyakarta,Indonesia
– sequence: 3
  givenname: Maryza
  surname: Intan Rahmawati
  fullname: Intan Rahmawati, Maryza
  email: maryzaintan@studentmail.unimap.edu.my
  organization: Universiti Malaysia Perlis,Faculty of Electrical Engineering and Technology,Department of Mechatronic Engineering,Perlis,Malaysia
– sequence: 4
  givenname: Anani
  surname: Aila Mat Zin
  fullname: Aila Mat Zin, Anani
  email: ailakb@usm.my
  organization: School of Medical Sciences, Universiti Sains Malaysia,Department of Pathology,Kelantan,Malaysia
– sequence: 5
  givenname: Faezahtul Arbaeyah
  surname: Hussain
  fullname: Hussain, Faezahtul Arbaeyah
  email: faezahtul@usm.my
  organization: School of Medical Sciences, Universiti Sains Malaysia,Department of Pathology,Kelantan,Malaysia
– sequence: 6
  givenname: Sri
  surname: Winiarti
  fullname: Winiarti, Sri
  email: sri.winiarti@tif.uad.ac.id
  organization: Universitas Ahmad Dahlan,Faculty of Industrial Technology,Department of Informatic,Yogyakarta,Malaysia
BookMark eNo1kE1LxDAYhCPoQdf9Bx6C99Z8tWmObnE_YFkFKx6Xt81bCcZWknbFf29APQ0zh4eZuSLnwzggIbec5Zwzc7dqnrOdqEtZSJULJlSeUsW11mdkabSppOQFqwptLkmsPcToetfB5MaBjj2tMZyS9fQpYAdDh2GcY0q9j_QluuGNbqAdA107P2GgMFi6BQj0FU7ocaJrhGkOGOkKIlqaoAecQ-IdcPoaw3u8Jhc9-IjLP12QZv3Q1Nts_7jZ1ff7zBk5ZVYyJUyplQXBU19Vdpob2bO2anVhbVmhFLqQLbOysKyzjAmrWtFxVZm0UC7IzS_WIeLxM7gPCN_H_yvkDyg3WYw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BTS-I2C63534.2024.10941777
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331508579
EndPage 321
ExternalDocumentID 10941777
Genre orig-research
GrantInformation_xml – fundername: Universitas Muhammadiyah Yogyakarta
  funderid: 10.13039/100019469
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-d30429674da2115046c7193f0b8b75dd68e32753b0d35d0cd002d4b2c14893313
IEDL.DBID RIE
IngestDate Thu Apr 10 08:20:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-d30429674da2115046c7193f0b8b75dd68e32753b0d35d0cd002d4b2c14893313
PageCount 6
ParticipantIDs ieee_primary_10941777
PublicationCentury 2000
PublicationDate 2024-Dec.-19
PublicationDateYYYYMMDD 2024-12-19
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-19
  day: 19
PublicationDecade 2020
PublicationTitle 2024 Beyond Technology Summit on Informatics International Conference (BTS-I2C)
PublicationTitleAbbrev BTS-I2C
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8928643
Snippet Cervical cancer remains a major global health concern, particularly in low-resource regions. This study explored the classification of cervical precancerous...
SourceID ieee
SourceType Publisher
StartPage 316
SubjectTerms Accuracy
Biological neural networks
Cervical cancer
Classification
Computer architecture
Feature extraction
Gabor Filter
Gabor filters
Haar Wavelet
Microprocessors
Neural Networks
ROC
Testing
Training
Wavelet transforms
Title Classification of Cervical Precancerous Cells Using Gabor Filter and Haar Wavelet Features Based on Neural Networks
URI https://ieeexplore.ieee.org/document/10941777
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXjdurtJN5tri7WClIJFeytJJguFspV9-PudSVvFgwdvS3aTwAzZb2Yy3wxj9wkYkABZBJYoOej4RMYVaMhpBcoINJFDaODtRU2n-WKhZzuyeuDCeO9D8pnv02O4y4eNaylUhidcy0Qp1WEdpbItWWtXSBRfPQznr9FzOkIIFRQtSWV_P-FX65SAHOPjf-55wno_HDw--0aXU3bgyzNWhx6WlN0TBMo3BR-Fw27W-LF3pMIKfXkcXa9rHvIB-BPpmY9XdC_OTQl8YkzF3w21nGg42YAt-tx8iHgGHBeleh243nSbIF732Hz8OB9Nol3bhGilRRMBBSh0piSYlMw9mTmFVloR29yqAaol9yJFJ8XGIAYQO8B_IkibuoTq0IhEnLNuuSn9BeMpwpdRMvcxFMSQtULbIiusTMDFTolL1iOBLT-2hTGWe1ld_TF-zY5ILZQNkugb1m2q1t-yQ_fZrOrqLqjzCzZaoh8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI1gIMEJEEN8kwPXjrbJmva6ibGJUU2igt2mNE6lSVOH2o7fj51tIA4cuFVpk0i20mc7fjZj9wFokACRBzlRctDx8bQp0JBLFCgt0ER2oYG3sUrTeDpNJhuyuuPCWGtd8pnt0KO7y4elWVGoDE94IgOl1C7b60oZ-mu61qaUKL586GWv3ijsI4gKipeEsrOd8qt5isOOwdE_dz1m7R8WHp9848sJ27HlKatdF0vK73Ei5cuC991x1wv82BpSYoXePI4uFjV3GQH8iTTNB3O6Gee6BD7UuuLvmppONJyswBV63byHiAYcF6WKHbheuk4Rr9ssGzxm_aG3aZzgzRPReEAhiiRSEnRIBp-MjEI7rfDzOFddVExsRYhuSu6D6IJvAP-KIPPQBFSJRgTijLXKZWnPGQ8RwLSSsfWhII5sLpK8iIpcBmB8o8QFa5PAZh_r0hizrawu_xi_YwfD7GU8G4_S5yt2SCqi3JAguWatplrZG7ZvPpt5Xd061X4B0r-lZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+Beyond+Technology+Summit+on+Informatics+International+Conference+%28BTS-I2C%29&rft.atitle=Classification+of+Cervical+Precancerous+Cells+Using+Gabor+Filter+and+Haar+Wavelet+Features+Based+on+Neural+Networks&rft.au=Jusman%2C+Yessi&rft.au=Resky+Pahlevi%2C+Nanda&rft.au=Intan+Rahmawati%2C+Maryza&rft.au=Aila+Mat+Zin%2C+Anani&rft.date=2024-12-19&rft.pub=IEEE&rft.spage=316&rft.epage=321&rft_id=info:doi/10.1109%2FBTS-I2C63534.2024.10941777&rft.externalDocID=10941777