NSL-KDD Dataset Analysis: A Machine Learning Implementation to Detect Intrusions in the Computer Network

The internet has significantly altered society, including business transactions, while increasing security threats that require robust protection for computer resources. This research advocates for using machine learning techniques to enhance intrusion detection, moving beyond traditional rule-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 2nd International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES) S. 1 - 6
Hauptverfasser: Mishra, Nilamadhab, Mishra, Sarojananda
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 19.12.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The internet has significantly altered society, including business transactions, while increasing security threats that require robust protection for computer resources. This research advocates for using machine learning techniques to enhance intrusion detection, moving beyond traditional rule-based systems. By selecting key features, we aim to identify intruders and network anomalies more efficiently. Researcher will investigate classification algorithms like random forest, logistic regression, and k-nearest neighbors using the NSL-KDD dataset. The approach incorporates confusion matrices for in-depth analysis to improve detection accuracy and reduce redundancy. Additionally, will examine challenges related to data quality, model interpretability, and ethical concerns about bias in machine learning.
AbstractList The internet has significantly altered society, including business transactions, while increasing security threats that require robust protection for computer resources. This research advocates for using machine learning techniques to enhance intrusion detection, moving beyond traditional rule-based systems. By selecting key features, we aim to identify intruders and network anomalies more efficiently. Researcher will investigate classification algorithms like random forest, logistic regression, and k-nearest neighbors using the NSL-KDD dataset. The approach incorporates confusion matrices for in-depth analysis to improve detection accuracy and reduce redundancy. Additionally, will examine challenges related to data quality, model interpretability, and ethical concerns about bias in machine learning.
Author Mishra, Sarojananda
Mishra, Nilamadhab
Author_xml – sequence: 1
  givenname: Nilamadhab
  surname: Mishra
  fullname: Mishra, Nilamadhab
  email: nilamadhab76@gmail.com
  organization: Engineering Biju Patnaik University of Technology,Rourkela,India
– sequence: 2
  givenname: Sarojananda
  surname: Mishra
  fullname: Mishra, Sarojananda
  email: sarose.mishra@gmail.com
  organization: Indira Gandhi Institute of Technology,Department of CSE and Application,Sarang,Odisha,India
BookMark eNo1z8tKw0AYBeARdKG1b-BifIDUueUy7kJSNRhbId2X38kfM5hMQjJF-vYGVDhw4FscODfk0g0OCbnnbMM50w9Vtn_fVpFSUbwRTKjNgprFWl2QtY51IiUPWaRCcU3aXVUGr3lOc_Awo6epg-482_mRpvQNTGsd0hJhctZ90qIfO-zRefB2cNQPNEePxtPC-ek0LzZTu3iLNBv68eRxojv038P0dUuuGuhmXP_1ihyetofsJSj3z0WWloHV0gdGJY1OoDaNAF1zriVikgiEcAmANMZwUUfwwbGWcawZUzoUMgIVGmgkyBW5-521iHgcJ9vDdD7-_5c_pKxXHg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SCOPES64467.2024.10990794
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331506452
EndPage 6
ExternalDocumentID 10990794
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-c48f98adcf2a9d1193ee882ea5ea5aa3ccc12d6ab1ed377900495236a45caf3a3
IEDL.DBID RIE
IngestDate Thu May 29 05:57:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-c48f98adcf2a9d1193ee882ea5ea5aa3ccc12d6ab1ed377900495236a45caf3a3
PageCount 6
ParticipantIDs ieee_primary_10990794
PublicationCentury 2000
PublicationDate 2024-Dec.-19
PublicationDateYYYYMMDD 2024-12-19
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-19
  day: 19
PublicationDecade 2020
PublicationTitle 2024 2nd International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES)
PublicationTitleAbbrev SCOPES
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.892811
Snippet The internet has significantly altered society, including business transactions, while increasing security threats that require robust protection for computer...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Classification
Computer networks
Ethics
Intrusion detection
Logistic regression
Machine Learning
Nearest neighbor methods
NSL-KDD
Protection
Random forests
Redundancy
Signal processing
Title NSL-KDD Dataset Analysis: A Machine Learning Implementation to Detect Intrusions in the Computer Network
URI https://ieeexplore.ieee.org/document/10990794
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uiHhSceJvInjNtjZp0niTdUNx1sF22G28pa9uBzvR6t9vkraKBw9CDiEEQn7x5eW973uEXCt7mfsgOBM6EMwiVMiWJl-yWCpb59DH2BOFxypN4_lcT2qyuufCIKIPPsOuq3pffrYxH-6rrOe9OPYAtUhLKVmRtXbIVa2b2ZsOnibDqQV4qazhF4pu0_9X5hQPHKO9fw65Tzo_FDw6-QaXA7KFxSFZpdMxe0gSmkBp0aekjaTIDb2ljz4sEmmtmPpMvfDvS80tKmi5oQk6lwG9LxzTwp03urbtK6RNbgeaVlHhHTIbDWeDO1anSmBrzUtmRJzrGDKTh6CzwD7KEO3TGSGyBYAbY4Iwk7AMMPMKg9YusBaoBBEZyDnwI9IuNgUeEyr7wkhjhI7zSCAPY1Ag8iyKnGoOD4MT0nGrtHitxDAWzQKd_tF-RnbdXrgIkECfk7adIF6QbfNZrt_fLv0WfgEZSp8E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQcAEiCLeGInVbRM7D7OhplWrpqFSO3SrXOdCM5AiCPx-bDcBMTAgebAsWZZf-ny--74DuA_0Ze5IzigXDqcaoVy6VNmShn6g60x2MLRE4ThIknA-F5OKrG65MIhog8-wZarWl5-u1Yf5KmtbL44-QNuwY1JnVXStPbirlDPb0-7TpDfVEO8H2vRzeavu8St3ioWO_uE_Bz2C5g8Jj0y-4eUYtrA4gVUyjekoikgkS40_JalFRR7IIxnbwEgklWbqM7HSvy8Vu6gg5ZpEaJwGZFgYroU5cSTX7SskdXYHkmziwpsw6_dm3QGtkiXQXLCSKh5mIpSpylwpUkc_yxD14xmlp4uUTCnluKkvlw6mVmNQWwbaBvUl95TMmGSn0CjWBZ4B8Ttc-UpxEWYeR-aGMpA8Sz3P6OYw1zmHplmlxetGDmNRL9DFH-23sD-YjeNFPExGl3Bg9sXEgzjiChp6sngNu-qzzN_fbux2fgGPRqJN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+2nd+International+Conference+on+Signal+Processing%2C+Communication%2C+Power+and+Embedded+System+%28SCOPES%29&rft.atitle=NSL-KDD+Dataset+Analysis%3A+A+Machine+Learning+Implementation+to+Detect+Intrusions+in+the+Computer+Network&rft.au=Mishra%2C+Nilamadhab&rft.au=Mishra%2C+Sarojananda&rft.date=2024-12-19&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSCOPES64467.2024.10990794&rft.externalDocID=10990794