GPU-Accelerated Feature Extraction for Real-Time Vision AI and LLM Systems Efficiency: Autonomous Image Segmentation, Unsupervised Clustering, and Smart Pattern Recognition for Scalable AI Processing with 6.6× Faster Performance, 2.5× Higher Accuracy, and UX-Centric UI Boosting Human-in-the-Loop Productivity

The high computational cost of digital image processing, requiring high-performance hardware and extensive resources, severely limits real-time applications. While advancements in algorithm design and GPU acceleration have significantly improved efficiency, modern AI-driven applications such as larg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASMC proceedings S. 1 - 8
Hauptverfasser: Ahi, Kiarash, Wu, Stewart, Sriram, Satya, Fenger, Germain
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 05.05.2025
Schlagworte:
ISSN:2376-6697
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!