DDRM: An SLO-aware Deep Dynamic Resource Management Framework for Microservices
Loosely coupled microservice architectures have been widely adopted in cloud-native applications due to their inherent advantages in modularity, development agility, and scalability. However, the resulting complex and dynamic service topologies introduce intricate inter-service dependencies, which o...
Uloženo v:
| Vydáno v: | Proceedings / IEEE International Conference on Cluster Computing s. 1 - 12 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
02.09.2025
|
| Témata: | |
| ISSN: | 2168-9253 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Loosely coupled microservice architectures have been widely adopted in cloud-native applications due to their inherent advantages in modularity, development agility, and scalability. However, the resulting complex and dynamic service topologies introduce intricate inter-service dependencies, which often lead to backpressure effects and queuing delays. These phenomena significantly challenge traditional monolithic and rule-based resource management approaches, which struggle to capture the non-linear performance characteristics and long-term effects of resource allocation decisions in such environments. To address these challenges, we propose DDRM, a two-stage predictor-decider collaborative framework for dynamic resource management in microservice systems. DDRM integrates deep learning to model inter-service interactions and predict the probability of Service Level Objective (SLO) violations, and employs reinforcement learning to optimize resource allocation decisions by maximizing long-term cumulative rewards while meeting SLO targets. Extensive evaluations demonstrate that DDRM outperforms state-of-the-art baselines by up to 29.8 %, while exhibiting strong stability and adaptability under highly varying workloads. |
|---|---|
| AbstractList | Loosely coupled microservice architectures have been widely adopted in cloud-native applications due to their inherent advantages in modularity, development agility, and scalability. However, the resulting complex and dynamic service topologies introduce intricate inter-service dependencies, which often lead to backpressure effects and queuing delays. These phenomena significantly challenge traditional monolithic and rule-based resource management approaches, which struggle to capture the non-linear performance characteristics and long-term effects of resource allocation decisions in such environments. To address these challenges, we propose DDRM, a two-stage predictor-decider collaborative framework for dynamic resource management in microservice systems. DDRM integrates deep learning to model inter-service interactions and predict the probability of Service Level Objective (SLO) violations, and employs reinforcement learning to optimize resource allocation decisions by maximizing long-term cumulative rewards while meeting SLO targets. Extensive evaluations demonstrate that DDRM outperforms state-of-the-art baselines by up to 29.8 %, while exhibiting strong stability and adaptability under highly varying workloads. |
| Author | Li, Zhijun Wang, Jin Wang, Wanyou Tang, Liangping Shi, Gaotao |
| Author_xml | – sequence: 1 givenname: Liangping surname: Tang fullname: Tang, Liangping email: lptang@stu.suda.edu.cn organization: School of Future Science and Engineering,NEIC Laboratory, Soochow University,Soochow,China – sequence: 2 givenname: Jin surname: Wang fullname: Wang, Jin email: wjin1985@suda.edu.cn organization: School of Future Science and Engineering,NEIC Laboratory, Soochow University,Soochow,China – sequence: 3 givenname: Wanyou surname: Wang fullname: Wang, Wanyou email: wangwanyou@stu.hit.edu.cn organization: Harbin Institute of Technology,Faculty of Computing,Harbin,China – sequence: 4 givenname: Gaotao surname: Shi fullname: Shi, Gaotao email: shgt@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University,Tianjin,China – sequence: 5 givenname: Zhijun surname: Li fullname: Li, Zhijun email: lizhijun_os@hit.edu.cn organization: Harbin Institute of Technology,Faculty of Computing,Harbin,China |
| BookMark | eNo1j81Kw0AURkdRsK19AxeD-9R7ZyY_4640rQoJgbSuy8z0jkRNUibV0re3oK6-w1kc-Mbsqus7YuweYYYI-mFRvK43yzrWUomZABGfNWaJSsUFm-pUZ1JiLAF1dslGApMs0iKWN2w8DO8AMpWQjFiV53X5yOcdXxdVZI4mEM-J9jw_daZtHK9p6L-CI16azrxRS92Br4Jp6diHD-77wMvGhX6g8N04Gm7ZtTefA03_dsI2q-Vm8RwV1dPLYl5EjZaHyLp4t7PKCgEKTIJgNWYKSdozOJ9aVE54FNIBOUUEJpPKg0_EzsQWvZywu99sQ0TbfWhaE07b___yB6iOUj8 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CLUSTER59342.2025.11186472 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798331530198 |
| EISSN | 2168-9253 |
| EndPage | 12 |
| ExternalDocumentID | 11186472 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2023YFB4503100 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 62072321 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i93t-bc5ddb4b22040a610b91841e3bb91cf7b14c2f123c0ec4ee0a834f0f62da5b1f3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Nov 05 07:06:02 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-bc5ddb4b22040a610b91841e3bb91cf7b14c2f123c0ec4ee0a834f0f62da5b1f3 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_11186472 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Sept.-2 |
| PublicationDateYYYYMMDD | 2025-09-02 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-Sept.-2 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / IEEE International Conference on Cluster Computing |
| PublicationTitleAbbrev | CLUSTER |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0037306 |
| Score | 2.3023875 |
| Snippet | Loosely coupled microservice architectures have been widely adopted in cloud-native applications due to their inherent advantages in modularity, development... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Cloud computing Collaboration Deep learning deep learning for systems Dynamic scheduling Microservice architectures microservices resource efficiency resource man-agement Resource management Scalability Stability analysis Thermal stability |
| Title | DDRM: An SLO-aware Deep Dynamic Resource Management Framework for Microservices |
| URI | https://ieeexplore.ieee.org/document/11186472 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZoxcBUjiJueWB1Gx9JHDbUUDH0Ei1St8rHs9QlrXrA38dxExADA5ttyZJl-_k929_3PoQebWoNFakgTIIhPr5VRJqYEZFYLf31w3u1oFoySEcjOZ9nk4qsHrgwABDAZ9Api-Ev367Mvnwq63q7lGW68wZqpGlyIGvVxy73WzWpsorSKOv2Bu9THxDGGRcl34rFnbr3Lx2V4Eb6rX8O4BS1fwh5ePLtas7QERTnqFUrMuDKQC_QOM_fhk_4ucDTwZioT7UBnAOscX4Qnsf1az3-gb3gfo3Pwj6AxcMSobetTpA2mvVfZr1XUkkmkGXGd0Sb2FotNGPeNpWPjHTmb3AUuPYF41JNhWHOOysTgREAkZJcuMglzKpYU8cvUbNYFXCFMGUuo9YpUAyEMDozcaJVoq3iIH39GrXL-VmsD0kxFvXU3PzRfotOylUI8Cx2h5q7zR7u0bH52C23m4ewlF93-5_H |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BQYJTWYrY8YGr28RxNm6ooSoiXUSL1FvlZSz1klZd4Pdx0oSKAwdutiVLlu3xjO335gE86lArl4ecsggVtfGtoJHyGeWBlpG9flivVqiWpGG_H00m8bAkqxdcGEQswGfYzIvFX76eq03-VNaydhnl6c734cDnnDlbulZ18Hp2swZlXlHXiVvt9GNkQ0I_9njOuGJ-s-r_S0mlcCSd-j-HcAKNHSWPDH-czSnsYXYG9UqTgZQmeg6DJHnvPZHnjIzSARVfYokkQVyQZCs9T6r3erIDvpBOhdAiNoQlvRyjtyrPkAaMOy_jdpeWogl0FntrKpWvteSSMWudwsZGMrZ3OBc9aQvKhNLlihnrrpSDiiM6IvK4cUzAtPCla7wLqGXzDC-BuMzErjYCBUPOlYyVH0gRSC08jGz9Chr5_EwX27QY02pqrv9of4Cj7riXTtPX_tsNHOcrUoC12C3U1ssN3sGh-lzPVsv7Ylm_AfW-ow4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Cluster+Computing&rft.atitle=DDRM%3A+An+SLO-aware+Deep+Dynamic+Resource+Management+Framework+for+Microservices&rft.au=Tang%2C+Liangping&rft.au=Wang%2C+Jin&rft.au=Wang%2C+Wanyou&rft.au=Shi%2C+Gaotao&rft.date=2025-09-02&rft.pub=IEEE&rft.eissn=2168-9253&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FCLUSTER59342.2025.11186472&rft.externalDocID=11186472 |