Distributed State Estimation over Sensor Networks with Sensor Resolution under Binary Encoding Scheme
In this paper, the distributed state estimation problem is investigated for a class of discrete time-varying nonlinear systems over sensor networks with sensor resolution, where a binary encoding scheme is employed to address bandwidth limitations. The measurement output is converted into a binary b...
Saved in:
| Published in: | 2025 7th International Conference on Next Generation Data-driven Networks (NGDN) pp. 50 - 55 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
06.06.2025
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, the distributed state estimation problem is investigated for a class of discrete time-varying nonlinear systems over sensor networks with sensor resolution, where a binary encoding scheme is employed to address bandwidth limitations. The measurement output is converted into a binary bit string, conveyed through a memoryless binary symmetric channel subject to a certain probability of bit flips, and then reconstructed by a decoder. The influence of both sensor resolution and binary encoding scheme on estimation accuracy is considered simultaneously, where a distributed recursive state estimation strategy over sensor networks is constructed. Subsequently, the estimator gain that minimizes the upper bound on the estimation error covariance is obtained by solving Riccati-like difference equations. Finally, the validity of the developed algorithm is displayed through a simulation example. |
|---|---|
| AbstractList | In this paper, the distributed state estimation problem is investigated for a class of discrete time-varying nonlinear systems over sensor networks with sensor resolution, where a binary encoding scheme is employed to address bandwidth limitations. The measurement output is converted into a binary bit string, conveyed through a memoryless binary symmetric channel subject to a certain probability of bit flips, and then reconstructed by a decoder. The influence of both sensor resolution and binary encoding scheme on estimation accuracy is considered simultaneously, where a distributed recursive state estimation strategy over sensor networks is constructed. Subsequently, the estimator gain that minimizes the upper bound on the estimation error covariance is obtained by solving Riccati-like difference equations. Finally, the validity of the developed algorithm is displayed through a simulation example. |
| Author | Yang, Xiaolong Li, Jiaying Bi, Xinran Chen, Wen |
| Author_xml | – sequence: 1 givenname: Xiaolong surname: Yang fullname: Yang, Xiaolong email: 2320500017@stu.hrbust.edu.cn organization: Harbin University of Science and Technology,School of Automation,Harbin,China,150080 – sequence: 2 givenname: Wen surname: Chen fullname: Chen, Wen email: chenwen@hrbust.edu.cn organization: Harbin University of Science and Technology,School of Automation,Harbin,China,150080 – sequence: 3 givenname: Jiaying surname: Li fullname: Li, Jiaying email: 2420800030@stu.hrbust.edu.cn organization: Harbin University of Science and Technology,Department of Applied Mathematics,Harbin,China,150080 – sequence: 4 givenname: Xinran surname: Bi fullname: Bi, Xinran email: 2320800029@stu.hrbust.edu.cn organization: Harbin University of Science and Technology,Department of Applied Mathematics,Harbin,China,150080 |
| BookMark | eNo1T81KAzEYjKAHrX0DwbzA1vzsT3LUtlahrOD2XpLNFxtsE0mylr69i9rDMMMwMzA36NIHDwjdUzKjlMiHdrVo65oRMWOEVaNHBaMlvUBT2UjBOa0q3pT1NYKFSzk6PWQwuMsqA16m7A4qu-Bx-IaIO_ApRNxCPob4mfDR5d3ZfIcU9sNvdvBmDD85r-IJL30fjPMfuOt3cIBbdGXVPsH0nydo87zczF-K9dvqdf64LpzkudA9B90Lwy0HIFwQzkBXatSyMlo3paKG2Zqy2jZWScWEldaMkFaRZmxM0N3frAOA7Vccb8TT9nye_wBTh1eE |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/NGDN66208.2025.11182141 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331553746 |
| EndPage | 55 |
| ExternalDocumentID | 11182141 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-bc3ebc8d3f3ee038032eb5aee095dbb74a1d2f6126f7fa9a28f9fdf9f9fa07e03 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 08 06:20:53 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-bc3ebc8d3f3ee038032eb5aee095dbb74a1d2f6126f7fa9a28f9fdf9f9fa07e03 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_11182141 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-6 |
| PublicationDateYYYYMMDD | 2025-06-06 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-6 day: 06 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 7th International Conference on Next Generation Data-driven Networks (NGDN) |
| PublicationTitleAbbrev | NGDN |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9108367 |
| Snippet | In this paper, the distributed state estimation problem is investigated for a class of discrete time-varying nonlinear systems over sensor networks with sensor... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 50 |
| SubjectTerms | Bandwidth binary encoding scheme Decoding Difference equations distributed state estimation Encoding Estimation error Next generation networking Nonlinear systems sensor networks sensor resolution State estimation Time-varying systems Upper bound |
| Title | Distributed State Estimation over Sensor Networks with Sensor Resolution under Binary Encoding Scheme |
| URI | https://ieeexplore.ieee.org/document/11182141 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV2_TwMhFCbaODipscbfYXClvYO741i1rU6XJu3QreHHI-ngnbm2_v3yuKvGwcGBhBAIgQfh4_F9PEKeEEMH5ABMWZexTGrPjBDAOIDIcm1SABODTciqKlcrNe_F6lELAwCRfAYjzMa3fNfYPbrKximi4RRl6sdSFp1Yq-dspYkaV6-Tqih4gowtno8OtX_FTYnHxuzsnx2ek-GPAI_Ov4-WC3IE9SWBCX5yi_GpwNEIEuk0bNBOe0iRikkX4VLatLTquN1bil7WQyE66rtlRlE41tLnKMWl09o22AtdBPu9w5AsZ9PlyxvroySwjRI7ZqwAY0snvABIRJkIDibXIa9yZ4zMdOq4Dzim8NJrpXnplXchKa8TGVpckUHd1HBNKJc8t5nOXQaQ6SQvtQWehlrepGHAxQ0Z4hStP7p_MNaH2bn9o_yOnKIhIrGquCeDXbuHB3JiP3ebbfsYrfcFR2mg1w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVQQYIJEEW88cCaNrHz8gptKaJEldqhW-XHtdSBBKUt34-vk4IYGBgiWZYtK76JfHx9jg8hD4ihHXKAQGgTB3EmbaA4h4AB8DiRKgJQ3mwiK4p8sRDTVqzutTAA4Mln0MOiP8s3ld5iqqwfIRqOUKa-j9ZZrVyrZW1FoegXz4MiTVmInC2W9Hbtfzmn-IVjdPzPIU9I90eCR6ffi8sp2YPyjMAAr7lFhyow1MNEOnS_aKM-pEjGpDO3La1qWjTs7jXFPOuuElP1zYdGUTpW00cvxqXDUlc4Cp25CL5Dl8xHw_nTOGh9EoKV4JtAaQ5K54ZbDhDyPOQMVCJdWSRGqSyWkWHWIZnUZlYKyXIrrHGPsDLMXI9z0imrEi4IZRlLdCwTEwPEMkxyqYFFrpVVkXvh9JJ0cYqWH81NGMvd7Fz9UX9PDsfzt8ly8lK8XpMjDIqnWaU3pLOpt3BLDvTnZrWu73wkvwDSmKQg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+7th+International+Conference+on+Next+Generation+Data-driven+Networks+%28NGDN%29&rft.atitle=Distributed+State+Estimation+over+Sensor+Networks+with+Sensor+Resolution+under+Binary+Encoding+Scheme&rft.au=Yang%2C+Xiaolong&rft.au=Chen%2C+Wen&rft.au=Li%2C+Jiaying&rft.au=Bi%2C+Xinran&rft.date=2025-06-06&rft.pub=IEEE&rft.spage=50&rft.epage=55&rft_id=info:doi/10.1109%2FNGDN66208.2025.11182141&rft.externalDocID=11182141 |