Distributed State Estimation over Sensor Networks with Sensor Resolution under Binary Encoding Scheme

In this paper, the distributed state estimation problem is investigated for a class of discrete time-varying nonlinear systems over sensor networks with sensor resolution, where a binary encoding scheme is employed to address bandwidth limitations. The measurement output is converted into a binary b...

Full description

Saved in:
Bibliographic Details
Published in:2025 7th International Conference on Next Generation Data-driven Networks (NGDN) pp. 50 - 55
Main Authors: Yang, Xiaolong, Chen, Wen, Li, Jiaying, Bi, Xinran
Format: Conference Proceeding
Language:English
Published: IEEE 06.06.2025
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, the distributed state estimation problem is investigated for a class of discrete time-varying nonlinear systems over sensor networks with sensor resolution, where a binary encoding scheme is employed to address bandwidth limitations. The measurement output is converted into a binary bit string, conveyed through a memoryless binary symmetric channel subject to a certain probability of bit flips, and then reconstructed by a decoder. The influence of both sensor resolution and binary encoding scheme on estimation accuracy is considered simultaneously, where a distributed recursive state estimation strategy over sensor networks is constructed. Subsequently, the estimator gain that minimizes the upper bound on the estimation error covariance is obtained by solving Riccati-like difference equations. Finally, the validity of the developed algorithm is displayed through a simulation example.
AbstractList In this paper, the distributed state estimation problem is investigated for a class of discrete time-varying nonlinear systems over sensor networks with sensor resolution, where a binary encoding scheme is employed to address bandwidth limitations. The measurement output is converted into a binary bit string, conveyed through a memoryless binary symmetric channel subject to a certain probability of bit flips, and then reconstructed by a decoder. The influence of both sensor resolution and binary encoding scheme on estimation accuracy is considered simultaneously, where a distributed recursive state estimation strategy over sensor networks is constructed. Subsequently, the estimator gain that minimizes the upper bound on the estimation error covariance is obtained by solving Riccati-like difference equations. Finally, the validity of the developed algorithm is displayed through a simulation example.
Author Yang, Xiaolong
Li, Jiaying
Bi, Xinran
Chen, Wen
Author_xml – sequence: 1
  givenname: Xiaolong
  surname: Yang
  fullname: Yang, Xiaolong
  email: 2320500017@stu.hrbust.edu.cn
  organization: Harbin University of Science and Technology,School of Automation,Harbin,China,150080
– sequence: 2
  givenname: Wen
  surname: Chen
  fullname: Chen, Wen
  email: chenwen@hrbust.edu.cn
  organization: Harbin University of Science and Technology,School of Automation,Harbin,China,150080
– sequence: 3
  givenname: Jiaying
  surname: Li
  fullname: Li, Jiaying
  email: 2420800030@stu.hrbust.edu.cn
  organization: Harbin University of Science and Technology,Department of Applied Mathematics,Harbin,China,150080
– sequence: 4
  givenname: Xinran
  surname: Bi
  fullname: Bi, Xinran
  email: 2320800029@stu.hrbust.edu.cn
  organization: Harbin University of Science and Technology,Department of Applied Mathematics,Harbin,China,150080
BookMark eNo1T81KAzEYjKAHrX0DwbzA1vzsT3LUtlahrOD2XpLNFxtsE0mylr69i9rDMMMwMzA36NIHDwjdUzKjlMiHdrVo65oRMWOEVaNHBaMlvUBT2UjBOa0q3pT1NYKFSzk6PWQwuMsqA16m7A4qu-Bx-IaIO_ApRNxCPob4mfDR5d3ZfIcU9sNvdvBmDD85r-IJL30fjPMfuOt3cIBbdGXVPsH0nydo87zczF-K9dvqdf64LpzkudA9B90Lwy0HIFwQzkBXatSyMlo3paKG2Zqy2jZWScWEldaMkFaRZmxM0N3frAOA7Vccb8TT9nye_wBTh1eE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NGDN66208.2025.11182141
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331553746
EndPage 55
ExternalDocumentID 11182141
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-bc3ebc8d3f3ee038032eb5aee095dbb74a1d2f6126f7fa9a28f9fdf9f9fa07e03
IEDL.DBID RIE
IngestDate Wed Oct 08 06:20:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-bc3ebc8d3f3ee038032eb5aee095dbb74a1d2f6126f7fa9a28f9fdf9f9fa07e03
PageCount 6
ParticipantIDs ieee_primary_11182141
PublicationCentury 2000
PublicationDate 2025-June-6
PublicationDateYYYYMMDD 2025-06-06
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-6
  day: 06
PublicationDecade 2020
PublicationTitle 2025 7th International Conference on Next Generation Data-driven Networks (NGDN)
PublicationTitleAbbrev NGDN
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9108367
Snippet In this paper, the distributed state estimation problem is investigated for a class of discrete time-varying nonlinear systems over sensor networks with sensor...
SourceID ieee
SourceType Publisher
StartPage 50
SubjectTerms Bandwidth
binary encoding scheme
Decoding
Difference equations
distributed state estimation
Encoding
Estimation error
Next generation networking
Nonlinear systems
sensor networks
sensor resolution
State estimation
Time-varying systems
Upper bound
Title Distributed State Estimation over Sensor Networks with Sensor Resolution under Binary Encoding Scheme
URI https://ieeexplore.ieee.org/document/11182141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV2_TwMhFCbaODipscbfYXClvYO741i1rU6XJu3QreHHI-ngnbm2_v3yuKvGwcGBhBAIgQfh4_F9PEKeEEMH5ABMWZexTGrPjBDAOIDIcm1SABODTciqKlcrNe_F6lELAwCRfAYjzMa3fNfYPbrKximi4RRl6sdSFp1Yq-dspYkaV6-Tqih4gowtno8OtX_FTYnHxuzsnx2ek-GPAI_Ov4-WC3IE9SWBCX5yi_GpwNEIEuk0bNBOe0iRikkX4VLatLTquN1bil7WQyE66rtlRlE41tLnKMWl09o22AtdBPu9w5AsZ9PlyxvroySwjRI7ZqwAY0snvABIRJkIDibXIa9yZ4zMdOq4Dzim8NJrpXnplXchKa8TGVpckUHd1HBNKJc8t5nOXQaQ6SQvtQWehlrepGHAxQ0Z4hStP7p_MNaH2bn9o_yOnKIhIrGquCeDXbuHB3JiP3ebbfsYrfcFR2mg1w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVQQYIJEEW88cCaNrHz8gptKaJEldqhW-XHtdSBBKUt34-vk4IYGBgiWZYtK76JfHx9jg8hD4ihHXKAQGgTB3EmbaA4h4AB8DiRKgJQ3mwiK4p8sRDTVqzutTAA4Mln0MOiP8s3ld5iqqwfIRqOUKa-j9ZZrVyrZW1FoegXz4MiTVmInC2W9Hbtfzmn-IVjdPzPIU9I90eCR6ffi8sp2YPyjMAAr7lFhyow1MNEOnS_aKM-pEjGpDO3La1qWjTs7jXFPOuuElP1zYdGUTpW00cvxqXDUlc4Cp25CL5Dl8xHw_nTOGh9EoKV4JtAaQ5K54ZbDhDyPOQMVCJdWSRGqSyWkWHWIZnUZlYKyXIrrHGPsDLMXI9z0imrEi4IZRlLdCwTEwPEMkxyqYFFrpVVkXvh9JJ0cYqWH81NGMvd7Fz9UX9PDsfzt8ly8lK8XpMjDIqnWaU3pLOpt3BLDvTnZrWu73wkvwDSmKQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+7th+International+Conference+on+Next+Generation+Data-driven+Networks+%28NGDN%29&rft.atitle=Distributed+State+Estimation+over+Sensor+Networks+with+Sensor+Resolution+under+Binary+Encoding+Scheme&rft.au=Yang%2C+Xiaolong&rft.au=Chen%2C+Wen&rft.au=Li%2C+Jiaying&rft.au=Bi%2C+Xinran&rft.date=2025-06-06&rft.pub=IEEE&rft.spage=50&rft.epage=55&rft_id=info:doi/10.1109%2FNGDN66208.2025.11182141&rft.externalDocID=11182141