Redefining Agricultural Disease Management using AI and ML

Precision agriculture is a fast growing field that may contemporary issues surrounding agricultural sustainability are increasingly being addressed through innovative technologies. Machine learning, a cutting-edge tool that enhances precision agriculture, enables sophisticated methods for detecting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 International Conference on Intelligent Computing and Control Systems (ICICCS) S. 720 - 725
Hauptverfasser: B, Venkata Srinivasulu, Dixith, K.Sai, Shivaram, Keerthi, Reddy, Ch.Karthik
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 19.03.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Precision agriculture is a fast growing field that may contemporary issues surrounding agricultural sustainability are increasingly being addressed through innovative technologies. Machine learning, a cutting-edge tool that enhances precision agriculture, enables sophisticated methods for detecting and classifying plant diseases. This paper offers a comprehensive review of how ML and DL techniques are applied in precision agriculture, focusing on disease identification and categorization. A novel classification framework is introduced, organizing relevant studies into distinct categories-Method-wise Classification Based Approaches. First, we categorize the studies method wise into classification (e.,g, image, and video-based studies) or object detection (e. g., bounding box-based studies) algorithms. Moreover, we provide existing archives for the classification and tracking of plant infections. By presenting a systematic framework that groups machine learning techniques according to their methodology, this study seeks to close the gap between the current plant disease classification techniques. We offer a comparative study to identify the best methods for disease identification by assessing the effectiveness of cutting-edge classification and object recognition algorithms on the PlantDoc dataset. In addition to streamlining precision agriculture research, the suggested architecture provides a basis for creating plant disease detection models that are more precise and scalable.
AbstractList Precision agriculture is a fast growing field that may contemporary issues surrounding agricultural sustainability are increasingly being addressed through innovative technologies. Machine learning, a cutting-edge tool that enhances precision agriculture, enables sophisticated methods for detecting and classifying plant diseases. This paper offers a comprehensive review of how ML and DL techniques are applied in precision agriculture, focusing on disease identification and categorization. A novel classification framework is introduced, organizing relevant studies into distinct categories-Method-wise Classification Based Approaches. First, we categorize the studies method wise into classification (e.,g, image, and video-based studies) or object detection (e. g., bounding box-based studies) algorithms. Moreover, we provide existing archives for the classification and tracking of plant infections. By presenting a systematic framework that groups machine learning techniques according to their methodology, this study seeks to close the gap between the current plant disease classification techniques. We offer a comparative study to identify the best methods for disease identification by assessing the effectiveness of cutting-edge classification and object recognition algorithms on the PlantDoc dataset. In addition to streamlining precision agriculture research, the suggested architecture provides a basis for creating plant disease detection models that are more precise and scalable.
Author Dixith, K.Sai
Shivaram, Keerthi
B, Venkata Srinivasulu
Reddy, Ch.Karthik
Author_xml – sequence: 1
  givenname: Venkata Srinivasulu
  surname: B
  fullname: B, Venkata Srinivasulu
  email: bysanisrinu13@gmail.com
  organization: Vignan Institute of Technology and Science,Department of Computer Science and Engineering (AI & ML),Hyderabad,Telangana,508284
– sequence: 2
  givenname: K.Sai
  surname: Dixith
  fullname: Dixith, K.Sai
  email: kommusaidixith03@gmail.com
  organization: Vignan Institute of Technology and Science,Department of Computer Science and Engineering (AI & ML),Hyderabad,Telangana,508284
– sequence: 3
  givenname: Keerthi
  surname: Shivaram
  fullname: Shivaram, Keerthi
  email: shivaramkeerthi64@gmail.com
  organization: Vignan Institute of Technology and Science,Department of Computer Science and Engineering (AI & ML),Hyderabad,Telangana,508284
– sequence: 4
  givenname: Ch.Karthik
  surname: Reddy
  fullname: Reddy, Ch.Karthik
  email: chilukakarthikreddy@gmail.com
  organization: Vignan Institute of Technology and Science,Department of Computer Science and Engineering (AI & ML),Hyderabad,Telangana,508284
BookMark eNo1j81KxDAUhSPoQsd5AxfxAVpzm6bJdTfUv0IHQWc_3Ca3JdCJ0nYWvr2DP6sD5zt8cK7EefpILMQtqBxA4V1TN3X9XhlAyAtVmPxUuhJVeSbWaNFpDQYK5dyluH_jwH1MMQ1yM0zRH8flONEoH-LMNLPcUqKBD5wWeZx_Vo2kFOS2vRYXPY0zr_9yJXZPj7v6JWtfn5t602YR9ZJ1ValQOSAAi4E67BCINCnbW9P7AIYtee9CZzx1rjwxDlb7UjNWtld6JW5-tZGZ959TPND0tf9_pL8BgeJGPw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICCS65191.2025.10984904
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331512088
EndPage 725
ExternalDocumentID 10984904
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-b6409081a1179dab9b91aa3a07f75fcd15e7acc8db5cab84aa3ed73c43e967f03
IEDL.DBID RIE
IngestDate Thu May 29 05:57:34 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-b6409081a1179dab9b91aa3a07f75fcd15e7acc8db5cab84aa3ed73c43e967f03
PageCount 6
ParticipantIDs ieee_primary_10984904
PublicationCentury 2000
PublicationDate 2025-March-19
PublicationDateYYYYMMDD 2025-03-19
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-19
  day: 19
PublicationDecade 2020
PublicationTitle 2025 International Conference on Intelligent Computing and Control Systems (ICICCS)
PublicationTitleAbbrev ICICCS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9027264
Snippet Precision agriculture is a fast growing field that may contemporary issues surrounding agricultural sustainability are increasingly being addressed through...
SourceID ieee
SourceType Publisher
StartPage 720
SubjectTerms Advanced detection methods
Agricultural technology
Bounding box-based studies
Cameras
Classification algorithms
Computational efficiency
Computational study
Datasets for plant diseases
Deep learning
Image classification
Machine learning
Machine learning algorithms
MobileNetv2
Object detection algorithms
Object recognition
Plant disease classification
Plant disease detection
Plant diseases
PlantDoc dataset
Precision agriculture
Real-time systems
ResNet50
Sustainability
Sustainable development
Video-based studies
YOLOv5
Title Redefining Agricultural Disease Management using AI and ML
URI https://ieeexplore.ieee.org/document/10984904
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aRDypuOKbCF5Td5vsJvEmq8VCLUWL9FbymEgv27K2_n6TbB948OAtJANhMoSZSb75BqE7qXwY4gQjjDJJmKGMCJNZoo0udA4dxyKV0kefDwZiPJbDVbF6rIUBgAg-g3YYxr98OzPL8FTmb7gUTAb2z13Oi6ZYax_drngz73tlryzfCx-ThMSvk7fX8r86p0TH0T3855ZHKNmW4OHhxrkcox2oTtDDG1hwsaUDfvysN7QZ-Kn5ZsFbMAsOgHYv1cOqsvi1n6BR93lUvpBV8wMylXRBdOETL--uVaBss0pLLTOlqEq547kzNsuBK2OE1blRWjC_BpZTwyjIgruUnqJWNavgLICXqLcUlzx1IXni3kVrJnSRMpVSbuw5SoLek3lDbzFZq3zxx_wlOginG4BYmbxCrUW9hGu0Z74X06_6JhrlB00Jjh4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SRT2pWPFtBK-pu012k3iT1dLF7VK0SG8lT-llK2vr7zdJty0ePHgLeRAmQ5iZ5JtvALjjwrkhlhFEMOGIKEwQU7FGUslUJqZrSaBSei9oWbLxmA-bZPWQC2OMCeAz0_HN8JevZ2rhn8rcDeeMcM_-uZ0Q0o2W6Vq74LZhzrzPszzL3lLnlfjQr5t0Vit-1U4JpqN38M9ND0F7k4QHh2vzcgS2THUMHl6NNjYUdYCPH_WaOAM-LT9a4AbOAj2k3c3Koag0HBRtMOo9j7I-asofoCnHcyRTF3o5gy08aZsWkkseC4FFRC1NrNJxYqhQimmZKCEZcWNGU6wINjylNsInoFXNKnPq4UvY6YpyGlkfPlFnpCVhMo2IiDBV-gy0vdyTzyXBxWQl8vkf_Tdgrz8aFJMiL18uwL4_aQ_LivklaM3rhbkCO-p7Pv2qr4OCfgDj2ZFl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Conference+on+Intelligent+Computing+and+Control+Systems+%28ICICCS%29&rft.atitle=Redefining+Agricultural+Disease+Management+using+AI+and+ML&rft.au=B%2C+Venkata+Srinivasulu&rft.au=Dixith%2C+K.Sai&rft.au=Shivaram%2C+Keerthi&rft.au=Reddy%2C+Ch.Karthik&rft.date=2025-03-19&rft.pub=IEEE&rft.spage=720&rft.epage=725&rft_id=info:doi/10.1109%2FICICCS65191.2025.10984904&rft.externalDocID=10984904