Deep Residual U-Net Autoencoder with Weighted Overlapping Reconstruction for EMG Signal Denoising
Electromyography (EMG) signals, crucial for neuromuscular assessment, are frequently corrupted by noise, impairing signal fidelity and subsequent analysis across diverse applications. Conventional filters often inadequately address non-stationary noise or introduce signal distortion. This paper intr...
Saved in:
| Published in: | Signal Processing Algorithms, Architectures, Arrangements, and Applications Conference proceedings pp. 198 - 203 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
Division of Signal Processing and Electronic Syste
17.09.2025
|
| Subjects: | |
| ISBN: | 9788362065493, 8362065494 |
| ISSN: | 2326-0262 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Electromyography (EMG) signals, crucial for neuromuscular assessment, are frequently corrupted by noise, impairing signal fidelity and subsequent analysis across diverse applications. Conventional filters often inadequately address non-stationary noise or introduce signal distortion. This paper introduces an advanced deep learning framework for EMG denoising, centred on a U-Net-inspired convolutional autoencoder with integrated residual blocks and skip connections. Training utilised synthetic EMG data, closely emulating physiological frequency bands and burst dynamics, subsequently corrupted by a comprehensive noise model encompassing electrode, crosstalk, electronic, drift, and contact artefacts. Training was guided by a custom loss function that combined weighted mean squared error (MSE) with signal-to-noise ratio (SNR). The proposed autoencoder achieved substantial improvements, SNR increased from -0.95 dB (noisy) to 14.64 dB (denoised), and MSE was drastically reduced from 0.001493 V 2 to 0.000041 V 2 on the test dataset. Qualitative analysis confirmed effective noise suppression while retaining crucial EMG burst characteristics. This advanced framework offers a promising solution for robust restoration of EMG signals in practical settings. |
|---|---|
| AbstractList | Electromyography (EMG) signals, crucial for neuromuscular assessment, are frequently corrupted by noise, impairing signal fidelity and subsequent analysis across diverse applications. Conventional filters often inadequately address non-stationary noise or introduce signal distortion. This paper introduces an advanced deep learning framework for EMG denoising, centred on a U-Net-inspired convolutional autoencoder with integrated residual blocks and skip connections. Training utilised synthetic EMG data, closely emulating physiological frequency bands and burst dynamics, subsequently corrupted by a comprehensive noise model encompassing electrode, crosstalk, electronic, drift, and contact artefacts. Training was guided by a custom loss function that combined weighted mean squared error (MSE) with signal-to-noise ratio (SNR). The proposed autoencoder achieved substantial improvements, SNR increased from -0.95 dB (noisy) to 14.64 dB (denoised), and MSE was drastically reduced from 0.001493 V 2 to 0.000041 V 2 on the test dataset. Qualitative analysis confirmed effective noise suppression while retaining crucial EMG burst characteristics. This advanced framework offers a promising solution for robust restoration of EMG signals in practical settings. |
| Author | Mehmood, Atif Wiora, Jozef |
| Author_xml | – sequence: 1 givenname: Atif surname: Mehmood fullname: Mehmood, Atif email: atif.mehmood@polsl.pl organization: Silesian University of Technology,Department of Measurements and Control Systems,Gliwice,Poland,44-100 – sequence: 2 givenname: Jozef surname: Wiora fullname: Wiora, Jozef email: jozef.wiora@polsl.pl organization: Silesian University of Technology,Department of Measurements and Control Systems,Gliwice,Poland,44-100 |
| BookMark | eNo1kN1KwzAcxSNOcJt9A8G8QGe-mjaXY18K04mbeDnS5N8uMpPSZopvb8F5dTicc34XZ4QGPnhA6I6SCeOKqvvty1RmGc8njLBsQimjGaXiAo0KLhnpIyovUaLy4uyF4gM0ZJzJlDDJrlHSdR-EECqLHiiHSM8BGvwKnbMnfcRv6TNEPD3FAN4ECy3-dvGA38HVhwgWb76gPeqmcb7uRyb4LrYnE13wuAotXjyt8NbVvifNwQfX9b0bdFXpYwfJWcdot1zsZg_perN6nE3XqVM8piVRglsDjJUVNXkpM6W1qKSxSoiCC0usKpW1IJXOCSemAMmysrC5ZVabio_R7R_WAcC-ad2nbn_2_w_xX8IwW8o |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/SPA65537.2025.11215114 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 8362065516 9788362065516 |
| EndPage | 203 |
| ExternalDocumentID | 11215114 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-b0943dce22bf1c7b659aa4f6cd944834d0d9b9dde69a7030c8e625b8d7d2dacf3 |
| IEDL.DBID | RIE |
| ISBN | 9788362065493 8362065494 |
| ISSN | 2326-0262 |
| IngestDate | Wed Nov 05 07:12:47 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-b0943dce22bf1c7b659aa4f6cd944834d0d9b9dde69a7030c8e625b8d7d2dacf3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_11215114 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Sept.-17 |
| PublicationDateYYYYMMDD | 2025-09-17 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-Sept.-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | Signal Processing Algorithms, Architectures, Arrangements, and Applications Conference proceedings |
| PublicationTitleAbbrev | SPA |
| PublicationYear | 2025 |
| Publisher | Division of Signal Processing and Electronic Syste |
| Publisher_xml | – name: Division of Signal Processing and Electronic Syste |
| SSID | ssj0001682396 |
| Score | 1.921786 |
| Snippet | Electromyography (EMG) signals, crucial for neuromuscular assessment, are frequently corrupted by noise, impairing signal fidelity and subsequent analysis... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 198 |
| SubjectTerms | Autoencoders Convolution Convolutional Autoencoder (CAE) Deep learning Electromyography Electromyography (EMG) Noise measurement Noise reduction Residual Networks Signal denoising Signal Processing Signal to noise ratio Synthetic data Synthetic Data Generation Training U-Net |
| Title | Deep Residual U-Net Autoencoder with Weighted Overlapping Reconstruction for EMG Signal Denoising |
| URI | https://ieeexplore.ieee.org/document/11215114 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCFVxFveWBNm8SJH2NFW1goFS2iW-XYlypLUrVpfz--pA8YGNjiSFGSs3Xn-3zfd4Q8uZAeMA3MCyA1XsQD60nlay-0MlQaOM561WxCDAZyMlHDDVm94sIAQFV8Bi28rM7ybWFWCJW1A5RCCLBt9aEQvCZr7QEVLkOm6mZyIRbWcszCpHPQyJ_ciADK3ZjVxV7ukUC1R8MOj2MmXL4Yxq3ta341XKniTf_0n196Rpp75h4d7mLSOTmA_IKc_BAdvCS6CzCnH7CsaFj00xtASTurskBJSwsLitAs_aogU7D0fY2IH6o4zCjmqnvFWer2u7T39kJH2cwtR9qFvMgQemiScb83fn71No0WvEyx0kuwutAaCMMkDYxIeKy0jlJurIoQa7S-VYlyfpArjQ7CSHBZUyKtsKHVJmVXpJEXOVwTGjnXL2PLJBeRsznq24FvmPMLqW9lLG9IE401nddSGtOtnW7_uH9HjnFKsEAjEPek4f4QHsiRWZfZcvFYLYBvpA-qSw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0YNFEvfmH8dg9eC2233e4eiYAYoRLByI20u1PCpSVQ-P3ulAJ68OCtbdK0nd3Mdt7Oe4-QJ7OkOywCZjmQKMvjjraEtCPL1cKVEXAc9cJsIghDMRrJfklWL7gwAFA0n0END4u9fJ2pJUJldQelEBy0rd5H66ySrrWDVLhwmVzbybnYWsuxDhMmRSODspQBFNtztm73Mrc4sj7oN7jvs8BUjK5f2zzol-VKseK0T_75rqekuuPu0f52VToje5Cek-MfsoMXJGoCzOgHLAoiFv20QshpY5lnKGqpYU4RnKVfBWgKmr6vEPNDHYcJxWp1pzlLzR8vbfVe6GA6MROSNiHNpgg-VMmw3Ro-d6zSasGaSpZbMfYXagWuGyeOCmLuyyjyEq609BBt1LaWsTSZkMsIU4QSYOqmWOhAuzpSCbsklTRL4YpQzyR_4WsmeOCZmKPCHdiKmcyQ2Fr44ppUMVjj2VpMY7yJ080f1x_JYWfY6467r-HbLTnC4cF2DSe4IxXztXBPDtQqny7mD8Vk-Aa3vq2U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Signal+Processing+Algorithms%2C+Architectures%2C+Arrangements%2C+and+Applications+Conference+proceedings&rft.atitle=Deep+Residual+U-Net+Autoencoder+with+Weighted+Overlapping+Reconstruction+for+EMG+Signal+Denoising&rft.au=Mehmood%2C+Atif&rft.au=Wiora%2C+Jozef&rft.date=2025-09-17&rft.pub=Division+of+Signal+Processing+and+Electronic+Syste&rft.isbn=9788362065493&rft.issn=2326-0262&rft.spage=198&rft.epage=203&rft_id=info:doi/10.23919%2FSPA65537.2025.11215114&rft.externalDocID=11215114 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-0262&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-0262&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-0262&client=summon |

