Path planning using Hybrid Routing Algorithm

The aim of this hybrid algorithm is to design and refine a path-finding technique that integrates A * (A-star) and Dijkstra's algorithms, enhancing the efficiency of route planning by utilizing the advantages of both approaches. The method applies the advantages of the two algorithms by adaptin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 3rd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA) s. 1 - 6
Hlavní autoři: G, Abishek, P, Gokul Vasan, N, Janarthanan, P, Kumar
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.04.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The aim of this hybrid algorithm is to design and refine a path-finding technique that integrates A * (A-star) and Dijkstra's algorithms, enhancing the efficiency of route planning by utilizing the advantages of both approaches. The method applies the advantages of the two algorithms by adapting them according to the density of the environment. Dijkstra's algorithm is an optimal search algorithm that tries all possible paths to find the shortest path, but is resource-intensive in complex or large environments. The A *(A-star) algorithm optimizes performance by using heuristics to estimate the cost of reaching the goal, thus focusing on dependency and avoiding unnecessary computations. The hybrid strategy attempts to achieve performance and efficiency by combining A * 's efficiency in sparse setting and Dijkstra's extensive search in dense setting. Thus, it maximizes optimal path-finding while minimizing computational effort. Large-scale simulations were performed in MATLAB to compare the algorithm's performance in different environments with varying challenges. The comparison involves the evaluation of the efficiency, effectiveness, and computational complexity of the hybrid algorithm with respect to the standalone A * algorithm and Dijkstra's algorithm implementations.
AbstractList The aim of this hybrid algorithm is to design and refine a path-finding technique that integrates A * (A-star) and Dijkstra's algorithms, enhancing the efficiency of route planning by utilizing the advantages of both approaches. The method applies the advantages of the two algorithms by adapting them according to the density of the environment. Dijkstra's algorithm is an optimal search algorithm that tries all possible paths to find the shortest path, but is resource-intensive in complex or large environments. The A *(A-star) algorithm optimizes performance by using heuristics to estimate the cost of reaching the goal, thus focusing on dependency and avoiding unnecessary computations. The hybrid strategy attempts to achieve performance and efficiency by combining A * 's efficiency in sparse setting and Dijkstra's extensive search in dense setting. Thus, it maximizes optimal path-finding while minimizing computational effort. Large-scale simulations were performed in MATLAB to compare the algorithm's performance in different environments with varying challenges. The comparison involves the evaluation of the efficiency, effectiveness, and computational complexity of the hybrid algorithm with respect to the standalone A * algorithm and Dijkstra's algorithm implementations.
Author N, Janarthanan
P, Gokul Vasan
P, Kumar
G, Abishek
Author_xml – sequence: 1
  givenname: Abishek
  surname: G
  fullname: G, Abishek
  email: abishek130803@gmail.com
  organization: KS Rangasamy College of Technology,Department of ECE,Tiruchengode,Tamil Nadu,India
– sequence: 2
  givenname: Gokul Vasan
  surname: P
  fullname: P, Gokul Vasan
  email: gokulvasan425@gmail.com
  organization: KS Rangasamy College of Technology,Department of ECE,Tiruchengode,Tamil Nadu,India
– sequence: 3
  givenname: Janarthanan
  surname: N
  fullname: N, Janarthanan
  email: janajana9047@gmail.com
  organization: KS Rangasamy College of Technology,Department of ECE,Tiruchengode,Tamil Nadu,India
– sequence: 4
  givenname: Kumar
  surname: P
  fullname: P, Kumar
  email: kumar@ksrct.ac.in
  organization: KS Rangasamy College of Technology,Department of ECE,Tiruchengode,Tamil Nadu,India
BookMark eNo1j8FqwzAQRFVoDm2aP-jBH1Cnktaydo8mtE3ApSXkHiRrnQgcOTjOIX9fTNvLDG8OD-ZR3Kc-sRCZkkulJL1Wm8-6KgE1LbXUZhoLiUbdiQVZQgBlAKk0D-Ll243H7Ny5lGI6ZNfLlOubH2LItv11nLDqDv0Qx-PpScxa11148ddzsXt_263Wef31sVlVdR4JxtxL49nqViGF4FVBjbGMAbVTzhUlBw4GtPXGSocNMRasGyRsAXzTooO5eP7VRmben4d4csNt__8BfgA0pUFj
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AIMLA63829.2025.11040851
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331538965
EndPage 6
ExternalDocumentID 11040851
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-b05be72f189ddb149c57e8d82a1aa46eded5327b570a8c9e84e2c898f33bcf8a3
IEDL.DBID RIE
IngestDate Wed Jul 02 05:55:39 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-b05be72f189ddb149c57e8d82a1aa46eded5327b570a8c9e84e2c898f33bcf8a3
PageCount 6
ParticipantIDs ieee_primary_11040851
PublicationCentury 2000
PublicationDate 2025-April-29
PublicationDateYYYYMMDD 2025-04-29
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-29
  day: 29
PublicationDecade 2020
PublicationTitle 2025 3rd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA)
PublicationTitleAbbrev AIMLA
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9070572
Snippet The aim of this hybrid algorithm is to design and refine a path-finding technique that integrates A * (A-star) and Dijkstra's algorithms, enhancing the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms A Algorithm
Autonomous Systems
Decision making
Dijkstra's Algorithm
Heuristic algorithms
Hybrid Al-gorithm
Machine learning
Machine learning algorithms
Navigation
Obstacle Avoidance
Path planning
Real-time systems
Robot Navigation
Routing
Technological innovation
Uncertainty
Title Path planning using Hybrid Routing Algorithm
URI https://ieeexplore.ieee.org/document/11040851
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46PHhSseJvevBotzZpluRYxDFhjh522G0kea9zoO2YneB_b9K1igcPXkISAuElgS8v-b73CLkTDLFIQESCp85BKVQRaUpNFMegBEhX2ia6_kRMp3I-V3krVm-0MIjYkM-w76vNXz5UduufygYOqnxALufs7Asx3Im1OnZOrAbZ0_Mkc-eJegEK5f1u-K_EKQ1ujI7-OeMxCX4UeGH-jS0nZA_LU3Kfu-tauG7TDIWesr4Mx59ecxV6Zo9vZq_Lyvn7L28BmY0eZw_jqM12EK0UqyMTc4OCFolUAMb5LZYLlCCpTrROhwgInFFhuIi1tAplitRKJQvGjC2kZmekV1YlnpNQa7Re8WoZpCkm3DiQBq4SYCqxkKoLEnhLF-tdPItFZ-TlH_1X5NCvp_9Doeqa9OrNFm_Igf2oV--b22YXvgDstonV
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1SBT2pWPHbPXh02918mORYxLLFbemhh95KkpmtBW1L3Qr-e5PtVvHgwUtIAiFMEniZ5L0ZQu4kQyxSkLEU3DsohS5iQ6mNkwS0BOVLV0XXz-VgoMZjPazF6pUWBhEr8hm2QrX6y4eFW4ensraHqhCQyzs7u4JzmmzkWlt-TqLbnV4_7_gTRYMEhYrWdsCv1CkVcnQP_znnEWn-aPCi4Te6HJMdnJ-Q-6G_sEXLOtFQFEjr0yj7DKqrKHB7QrPzOl14j__lrUlG3afRYxbX-Q7imWZlbBNhUdIiVRrAes_FCYkKFDWpMfwBAUEwKq2QiVFOo-JIndKqYMy6Qhl2ShrzxRzPSGQMuqB5dQw4x1RYD9MgdApMpw64PifNYOlkuYloMdkaefFH_y3Zz0b9fJL3Bs-X5CCsbfhRofqKNMrVGq_JnvsoZ--rm2pHvgBK_I0c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+3rd+International+Conference+on+Artificial+Intelligence+and+Machine+Learning+Applications+Theme%3A+Healthcare+and+Internet+of+Things+%28AIMLA%29&rft.atitle=Path+planning+using+Hybrid+Routing+Algorithm&rft.au=G%2C+Abishek&rft.au=P%2C+Gokul+Vasan&rft.au=N%2C+Janarthanan&rft.au=P%2C+Kumar&rft.date=2025-04-29&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FAIMLA63829.2025.11040851&rft.externalDocID=11040851